
Using Linked List in Exact Schedulability Tests for
Fixed Priority Scheduling

Jiaming Lv∗, Xingliang Zou§, Albert M. K. Cheng§, and Yu Jiang+∗
∗School of Computer Science and Technology, Heilongjiang University, Harbin, Heilongjiang 150080, China

Email: 962831141@qq.com, jiangyu@hlju.edu.cn
§Department of Computer Science, University of Houston, Houston, TX 77004, USA

Email: xzou@uh.edu, cheng@cs.uh.edu

Abstract—Efficient exact schedulability tests are one of im-
portant considerations of both research motivation and practice
stage. In this paper, we investigate the exact response-time
schedulability tests for fixed priority preemptive systems. The
linked list is introduced to represent the simulated schedule of
a given task set. Each node in the linked list represents a busy
period. In addition, the memory space needed for the linked list
is managed in the user space. Experiments show that the linked
list-based exact test outperforms the current best exact response-
time test and the hyperplanes exact tests (HET) in the case of
task periods spanning no more than three orders of magnitude.

I. INTRODUCTION

Real-time systems are playing a crucial role in our daily
lives and in industry production, and fixed priority preemptive
scheduling is widely supported by most commercial real-time
operating systems [6].

In the context of fixed priority preemptive real-time systems,
it is known that for periodic/sporadic tasks that comply with a
restrictive system model and that have implicit deadlines the
Rate-Monotonic (RM) scheduling is optimal, i.e., if a feasible
scheduling exists for some task set then the RM scheduling is
feasible for that task set [11], [14]. RM means that the priority
of each task is assigned inversely proportional to its period
(i.e., minimum inter-arrival time between jobs of the task). It is
also known that when these tasks are released simultaneously
(i.e., sharing a common release time) the time required by
the first job of each task defines its response time [11], [14].
Therefore, it needs only to make response time analysis or
conduct exact schedulability test within a time length no more
than the maximum task period, and these tests are thus known
to be pseudo-polynomial in time complexity [8], [9], [1].

Although the response time computation for RM schedules
of implicit-deadline task-systems has been proved to be an
NP-hard problem [7], the scale of many commercial systems
is such that pseudo-polynomial exact tests can be used, and
to achieve more efficient exact tests for use such as online
response time analysis (RTA) is one of important consid-
erations of both research motivation and practice stage. A

This work is sponsored in part by the State Scholarship Fund of China under
award No. 201308230034, the US National Science Foundation under award
Nos. 0720856 and 1219082, the Funds of Heilongjiang Education Office of
China under award Nos. 12541627 and GJZ201301027, and the Heilongjiang
Student’s Platform for Innovation and Entrepreneurship Training Program of
China under award No. 2015102121008.

+Corresponding author.

significant research effort has been dedicated to improve the
performance of exact response-time tests [8], [1], [12], [2],
[6], [4], [13], such as finding good initial values, and to the
best of our knowledge the authors of [6] presented the current
best response-time test with better initial values.

In this paper, we investigate exact response-time schedula-
bility tests of the RM scheduling in an n-task real-time system.
For concision we use the Burns Standard Notation [5], such
as the number of tasks n, for 1 ≤ i ≤ n, the priority Pi, the
worst-case execution time Ci, the relative deadline Di, the
period Ti, the worst-case response time Ri, and the utilization
Ui, for a task τi.

The innovative aspect of our solution is that we use a linked
list for representing the schedule in the exact response-time
test, referred to as the LList-based exact test, for calculating the
worst-case response time. The time complexity of the LList-
based exact test is polynomial-time O(N) where N is the
total number of jobs within the time length Tn, while the
total number of nodes used in the linked list is no more than
N − n+ 1 in the worst case. Our experiments show that the
LList-based exact test outperforms the current best exact RTA
test [6] and the hyperplanes exact tests (HET) [2] in the case of
task periods spanning no more than three orders of magnitude,
and the needed memory space is also affordable.

II. OUR METHOD

We calculate the response time of each task set by simu-
lating its schedule within a time length Tn. In our method,
the schedule of a task set is represented by a linked list, and a
busy period [10] in the schedule is represented by a linked list
node. Each list node has three fields: the starting time of the
busy period, the end time of the busy period, and the pointer
to the next node. The simulation is performed task per task
in the priority order, from 1 to n, and, when the starting time
or the end time of a priority level-i busy period is the same
as that of a priority level-j busy period where j < i, then
the two nodes are merged into one node to represent a longer
busy period.

Another key factor for improving the efficiency of the LList-
based exact test is that before the simulation a memory array
is allocated as a whole and then the following operations of
memory allocation and recycle for each node are performed
in the user space instead of in the operating system space.



Fig. 1. Average execution time required by the HET, RTA, and LList-based
exact schedulability tests versus number of orders of magnitude range of
task periods. The range of periods starts from 10 and 104 for (a) and (b),
respectively. Note both x and y-axes are logarithmic scales.

TABLE I
HET, RTA, AND LLIST-BASED ALGORITHMS, EXECUTION TIME IN

COUNTER CLOCK CYCLES × 1,000

Orders of magnitude spanning tasks periods
Algorithm 1(a) 1(b) 2(a) 2(b) 3(a) 3(b) 4

HET 6.9 9.4 26.6 30.8 112.8 127.4 464.9
RTA 29.56 29.82 32.47 32.48 34.63 34.49 36.67
LList 1.01 1.17 4.12 4.35 25.19 25.94 208.9

RTA/LList 29.3 25.5 7.9 7.5 1.4 1.3 0.2

For an n-task set, the total number of jobs, N , in the
time interval [0, Tn) is N =

∑n
i=1(Tn/Ti) and only these

jobs are simulated in the LList-based exact test. This number
is sensitive to the span and the distribution of task periods.
Since one busy period in the schedule is represented with
merely one node and the simulation is performed task per
task in the task priority order, the total running time is mainly
determined by the time of operating linked list nodes, and thus
the time complexity of the LList-based exact test is related to
the number of nodes used in the simulation. Particularly, as
long as task periods span only one order of magnitude, only
O(n) time are needed for simulating an n-task set, regardless
of the length of the maximum period of the task set as well
as the total utilization. In the above mentioned case, the total
number of list nodes used in simulation is very small, and this
is the root cause why the LList-based test is performing better.

III. EXPERIMENT AND PRELIMINARY RESULTS

For comparison, we use the same parameters as those in
[6], the current best exact RTA test. Specifically, for each 24-
task set 24/M tasks were assigned to each of the M order
of magnitude ranges (e.g., 100-1,000, 1,000-10,000, 10,000-
100,000, etc.). Task periods were then uniformly and randomly
generated from the assigned range. The overall utilization
was fixed at 0.85 and the UUniFast algorithm [3] was used
to determine task utilizations Ui, and, hence, task execution
times, Ci = Ui ∗ Ti. There are 10,000 task sets in each order
of magnitude ranging from 1 to 5.

Fig. 1 and Table I show how the average number of
clock cycles required by the HET algorithm with initial
values Ri−1 + Ci, by the RTA test with initial values
maxi

k=1(R
LB
i (k)) [6], and by the LList-based test varied with

the number of orders of magnitude spanning task periods.
From the figure we can see that the execution time of the

TABLE II
THE MAXIMUM NUMBER OF NODES AND CORRESPONDING MEMORY

SPACE

Orders of magnitude spanning tasks periods
1(a) 1(b) 2(a) 2(b) 3(a) 3(b) 4

max # nodes 28 58 236 441 2302 3246 20996
KB(int32) 0.3 0.7 2.8 5.2 27.0 38.0 246.0

RTA test goes nearly steady while the HET and the LList-
based tests increase exponentially with increasing number of
orders of magnitude spanning task periods. Within three orders
of magnitude spanning task periods, however, the performance
of the LList-based test outperforms both the HET test and the
RTA test with the current best initial values.

Table II shows the maximum number of list nodes used
in the LList-based test versus number of orders of magnitude
range of task periods. From the table we can see that, within
three orders of magnitude spanning task periods, the memory
space needed by the linked list is completely affordable.

IV. CONCLUSION

The work presented in this paper is part of our ongoing
research on the response time analysis and exact scheduability
test for fixed priority preemptive systems. Our preliminary
results have shown that the LList-based exact test is a better
candidate in exact response-time tests when task periods span
no more than three orders of magnitude. More comprehensive
experiments will be conducted to investigate the suitable scope
of the LList-based exact test by varying the number of tasks,
the range of task periods, and the total utilizations.

REFERENCES

[1] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority preemptive
scheduling. Software Engineering Journal, 8(5):284–292, 1993.

[2] E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed
priority systems. IEEE Trans. on Computers, 53(11):1462–1473, 2004.

[3] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Syst., 30(1-2):129–154, 2005.

[4] R. I. Davis. A review of fixed priority and EDF scheduling for hard real-
time uniprocessor systems. ACM SIGBED Review, 11(1):8–19, 2014.

[5] R. I. Davis and A. Burns. Burns standard notation for real-time
scheduling. In Real-Time Systems: The past, the present, and the future.
N. Audsley, S.K. Baruah Editors, pages 38–41, Mar. 2013.

[6] R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability
tests for fixed priority real-time systems. IEEE Trans. on Computers,
57(9):1261–1276, 2008.

[7] F. Eisenbrand and T. Rothvoss. Static-priority real-time scheduling:
Response time computation is NP-hard. In IEEE RTSS 2008, pages
397–406, 2008.

[8] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer J., 29(5):390–395, 1986.

[9] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In IEEE
RTSS 1989, pages 166–171, 1989.

[10] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In IEEE RTSS 1990, pages 201–209, 1990.

[11] C. Liu and L. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of ACM, 20(1):46–61, 1973.

[12] W. C. Lu, K. J. Lin, H. W. Wei, and W. K. Shih. Period-dependent
initial values for exact schedulability test of rate monotonic systems. In
Proc. IPDPS 2007, pages 1–8.

[13] M. Park and H. Park. An efficient test method for rate monotonic
schedulability. IEEE Trans. on Computers, 63(5):1309–1315, 2014.

[14] O. Serlin. Scheduling of time critical processes. In Proc. AFIPS Spring
Computing Conf., pages 925–932, 1972.


