
Online Semi-Partitioned Multiprocessor Scheduling of Soft 

Real-Time Periodic Tasks for QoS Optimization 
 

Behnaz Sanati, Albert M. K. Cheng 

Department of Computer Science, University of Houston, Texas, USA 

Emails: {bsanati; acheng}@cs.uh.edu 
 

 

Abstract—In this paper, we propose a novel semi-

partitioning approach with an online choice of two 

approximation algorithms, Greedy and Load-Balancing, 

to schedule periodic soft real-time tasks in 

homogeneous multiprocessor systems. Our objective is 

to enhance the QoS by minimizing the deadline misses 

and maximizing the total reward or benefit obtained by 

completed tasks in minimum response time. Many real-

time applications and embedded systems can benefit 

from this solution including but not limited to video 

streaming servers, multi-player video games, cloud 

applications, medical monitoring systems, and IoT.  
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1. INTRODUCTION 
 

Multiprocessor systems are widely used in a fast-

growing number of real-time applications and embedded 

systems. Two examples of such systems are Cloud 

applications [1] and IoT [2]. In hard real-time systems, 

meeting all deadlines is critical, while in soft real-time 

systems, missing few deadlines does not drastically 

affect the system performance. However, it would 

compromise the quality of the service. 

 In such systems, jobs meeting their deadlines 

will gain a reward (also called benefit). Hence, 

researchers focus on maximizing rewards to improve the 

QoS. Besides the total reward, other factors also 

influence QoS, such as overall response time (makespan 

plus scheduling time) and deadline-miss ratio. 

Multiprocessor real-time scheduling algorithms may 

follow a partitioned or global approach or some hybrid 

of the two, called semi-partitioning.  

Global scheduling can have higher overhead in at 

least two respects: the contention delay and the 

synchronization overhead for a single dispatching queue 

is higher than for per-processor queues; the cost of 

resuming a task may be higher on a different processor 

than on the processor where it last executed, due to 

inter-processor interrupt handling and cache reloading. 

The latter cost can be quite variable, since it depends on 

the actual portion of a task’s memory that remains in 

cache when the task resumes execution, and how much 

of that remnant will be referenced again before it is 

overwritten [1]. These issues are discussed at some 

length by Srinivasan et al. [3]. Elnably et al. [1] study 

fair resource allocation and propose a reward-based 

model for QoS in Cloud applications. In contrast, 

Alhussian, Zakaria and Hussin [4] prefer global 

scheduling and try to improve real-time multiprocessor 

scheduling algorithms by relaxing the fairness and 

reducing preemptions and migrations.   

Amirijoo, Hansson and Son [5] discussed 

specification and management of QoS in real-time 

databases supporting imprecise computations. Reward-

based scheduling of periodic tasks has also been studied 

by Aydin et al. [6], and Hou and Kumar [7]. Aweruck et 

al. [8] proposed a reward-maximizing model for 

scheduling aperiodic tasks on uniprocessor systems 

which can also be applied to multiprocessors. We have 

also previously studied reward-based scheduling of 

aperiodic real-time tasks on multi-processor systems. 

We proposed two algorithms, GBBA [9] and LBBA 

[10], and provided performance analysis and 

comparative experimental results of those algorithms 

versus another state-of-the art algorithm [8].  

Significant improvements obtained by LBBA 

method, especially in reducing the overall response time 

(i.e., scheduling time plus makespan of the task sets), in 

addition to maximizing the total reward and minimizing 

tardiness, showed promising enhancement in QoS. That 

encouraged us to expand our research to solving the 

problem of scheduling periodic (and sporadic) soft real-

time tasks on multi-processor systems, on which 

relatively very little research has been done. LBBA is 

using partitioning strategy for aperiodic tasks. Now to 

extend it for scheduling periodic (and sporadic) tasks, 

we use semi-partitioning at job boundaries.   

Semi-partitioned real-time scheduling algorithms 

extend partitioned ones by allowing a subset of tasks to 

migrate. Given the goal of “less overhead,” it is 

desirable for such strategy to be boundary-limited, and 

allow a migrating task to migrate only between 

successive invocations (job boundaries). Non-boundary-

limited schedulers allow jobs to migrate, which can be 

expensive in practice, if jobs maintain much cached 

state.  

Previously proposed semi-partitioned algorithms 

for soft real-time (SRT) tasks such as EDF-fm and EDF-

os [11], have two phases: an offline assignment phase, 

where tasks are assigned to processors and fixed tasks 
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(which do not migrate) are distinguished from migrating 

ones; and an online execution phase. In their execution 

phase, rules that extend EDF scheduling are used. The 

goal in these strategies is to minimize tardiness.    

In this paper, we propose a new online reward-

based semi-partitioning approach to schedule periodic 

soft real-time tasks in homogeneous multiprocessor 

systems. We use an online choice of two approximation 

algorithms (Greedy approximation and Load-Balancing)  

for partitioning, which provides an optimized usage of 

processing time. In this method, no prior information is 

needed. Hence, there is no offline phase.  

Our objective is to enhance the QoS by 

minimizing tardiness and maximizing the total reward 

obtained by completed tasks in minimum makespan. 

Therefore, we allow different jobs of any task get 

assigned to different processors (migration at job 

boundaries) based on their reward-based priorities and 

workload of the processors. This method can also direct 

SRT systems with mixed set of tasks (aperiodic, 

sporadic and periodic) by defining their deadlines 

accordingly.  

Many real-time applications can benefit from this 

solution including but not limited to video streaming 

servers, multi-player video games, mobile online 

banking and medical monitoring systems. For example, 

consider mobile banking applications that are set to send 

monthly statements, weekly or daily balance notific-

ations (periodic) and also notifications when a check is 

posted or the balance is less than specific amount 

(aperiodic).   

Another example is a medical monitoring application 

installed on a physician´s laptop or smart phone which 

periodically receives the patients´ vital signs, such as 

blood pressure, number of heart beat, breathing per 

minute, etc. from the body sensor networks attached to 

the patients. It process and records them periodically 

and in case they go out of range and the situation is 

critical, sends alert (aperiodic). In the next sections, we 

explain our novel semi-partitioning hybrid model, which 

combines reward and cost models, for optimizing 

quality of service in soft real-time systems. 
 

2. OUR CONTRIBUTION 
 

2.1. System and Task Model 
A multiprocessor system with m identical processors 

is considered for partitioned, preemptive scheduling of 

periodic soft real-time task sets with implicit deadline. 

Each processor has its own pool (for ready tasks), stack 

(for preempted and running tasks) and garbage 

collection (for completed and tasks which missed 

deadlines). Each periodic task may be released at any 

time. Tasks are independent in execution and there are 

no precedence constraints among them. Pre-emption is 

allowed. A desired property of the system in this 

method is the possibility to delay jobs without 

drastically reducing the overall system performance. 
 

2.2. Our Methodology  
Semi-Partitioning Model: 

 This algorithm applies online semi-partitioning. In 

our partitioning approach, no job migration is allowed. 

In other words, each job, i.e. an instance of a task, will 

be assigned to a processor at release time, based on its 

priority and worst-case execution time, and also the 

current workloads of the processors, and it has to stay 

with that processor during its entire runtime in the 

system. However, different instances of a periodic task 

may be assigned to different processors. This method is 

possible since each processor has its own pool for the 

ready tasks assigned to it.  
 

Online Choice of Approximation Algorithms: 

 We consider Greedy and Load-balancing approx-

imation algorithms, one of which will be chosen online 

based on the conditions of the system at each time 

instance, for partitioning and scheduling task instances 

in order to optimize the CPU usage, minimize the 

makespan and prevent starvation of low priority tasks. 

We explain it in more details in subsection 2.4.   
 

2.3. Definitions 
 

Periodic Tasks: 

A periodic task, in real-time systems, is a task that is 

periodically released at a constant rate. Usually, two 

parameters are used to describe a periodic task Ti; its 

execution wi as well as its period pi. An instance of a 

periodic task (i.e release) is known as a job and is 

denoted as Ti,j, where j=1, 2, 3, … . The deadline of a 

job is the arrival time of its successor. For example, the 

deadline of the jth
 job of Ti, which is Ti, j, would be the 

arrival time of job Ti,(j+1), that is at jpi. 
 

Notations: 

We define the notations used throughout this paper 

as follows: 

ri,j  – release time of job Ti, j 

wi – execution time of job     , simply considered as 

workload of job Ti, j  in this paper 

pi  – period of task Ti 

si,j  – start time of job Ti, j 

ci,j  – completion time of job Ti,,j 

Bri,j – break point or deadline of job Ti,,j, is the minimum 

of:        Bri,j  = min (pi || si,j +2wi)                (1) 

βi(t) – benefit density function of task Ti at time t, for (t 

≥ wi), which is a non-increasing, non-negative function, 

with the following restriction to be satisfied for each 

βi(t):                             
       

         
                               (2) 

Note: for t < wi, there would be no benefit gained by job 

Ti,j, since it has certainly not completed its execution at 

time t. 

f i,j – flow time of job Ti,j:   

   fi,j= ci,j  -  ri,j                                                 (3) 

b i,j – benefit, gained by a completed job Ti,j : 

b i,j = wi. β i ( f i,j )                        (4) 
 

 



  
 

 

 

LBBA Algorithm for Periodic Tasks  

1   Required: One or more jobs arrive at time t ≥ 0 

2   { 

 

Job Arrival 

 

 3      /* TempList: list of ready jobs waiting for  

 4          distribution among processors */ 

 5      

 6      Append the arrived job(s) to the TempList 
  

Benefit-Based Scheduling 

 

7      Calculate the priority of each job Ti,j in the 

 8        TempList: 

 9          d i,j (t) = βi(t + wi - ri,j) 

 10    Sort TempList based on the priority      

 11    If (at least one stack is empty) 

 12    { 

 13   Push the highest priority job(s) Ti,j 

 14     onto empty stack(s) of idle processor(s) l; 

 15   Add its execution time wi to total workload  

 16     of the stack of the processor l (∑  Wsl ), 

 17   Recalculate total workload of processor l: 

 18     Wl  = ∑  Wpl + ∑  Wsl 

 19               Calculate the fixed priority of j using its 

 20                 start time si,j: 

 21                       d’i,j(t) = βi(si,j + wi – ri.j) 

 22               Start executing j,  

 23    } 

 24    Else 

 25    { 

 26           /* no stack is empty */ 

 27           /* preempt if possible otherwise distribute  

 28               among the pools */ 

29            Compare the priority of the ready jobs in  

30    TempList with the priority of the running  

31     jobs (indicated by index k) on top of the  

32              stacks: 

33 If (di,j(t) ≤ 4d’k  for ( each job Ti,j in TempList  

34                  and each running job Tk)   ) 

35 { 

36        /* no preemption allowed */ 

37        /* partition the ready jobs among 

38            pools of the processors */   
 

Load-Balancing Approximation (for Partitioning) 

 

39       For (each job Ti,j in TempList) 

40       {  

41         Sort the processors in ascending order of  

42                          their total remaining workload on their  

43                          pools and stacks: 

44                         Wl  = ∑  Wpl + ∑  Wsl  

45         Append the jobTi,j with largest  

46            execution time wi to the pool of the  

 

47               processor l with minimum remaining  

48               work load;   /* load balancing */ 

49            Remove Ti,j from TempList; 

50            Add its execution time wi to total  

51              workload of the pool of processor l  

52              (∑  Wpl ); 

53            Recalculate total workload of  

54              processor l: 

55             Wl  = ∑  Wpl + ∑  Wsl 

56       } 

57  }               

58           Else     

59                  /* if (di,j(t) > 4d’k)  then (Ti,j preempts Tk)*/ 

 
 

Greedy Approximation (multiple-choice Preemption) 

 
 

60                  /* If Ti,j has more than one choice of  

61                      processors, it will be pushed onto 

62                      the stack whose processor has the  

63                      least work load (greedy) */ 

64           {   

65                 Stop the execution of job k (preempt k), 

66                 Push the job Ti,j onto the stack on top of Tk,  

67                 Start executing Ti,j, 

68                 Calculate the fixed priority of Ti,j using its 

69                    Start time si,j,: d’i,j(t) = βi(si,j + wi – ri,j) 

70                           Add the execution time of Ti,j to the total  

71                    workload of that stack (∑  Wsl ), 

72    Recalculate total workload of the 

73          Processor l:      

74               Wl  = ∑  Wpl + ∑  Wsl 

75            } 
 

Check for missed Deadlines 

 

76             /* at each time instance t, if any of the running jobs   

77    on top of the stacks has reached its break point:  

78                      (t > Bri,j),  Bri,j  = min (pi || si,j +2wi) 

79                  remove the job from the stack and send 

80                  it to the processor Garbage Collection    

81                  otherwise, if not preempted, continue its  

82                  execution */ 

 

Benefit Gained by Completed Jobs 

 

83              /* for every completed job Ti,j calculate bi,j */ 

84             bi,j = wi. βi( fi,j )       

85            } 

 

Total Benefit Calculation 

 
 

86             /* calculate the sum of all benefits gained, 

87                 B is initially set to zero*/ 

89             B = B + bi,j 

90  } 



d i,j (t) – variable priority of job Ti,j  at time t, before 

scheduling (t < si,j):  d i,j (t) = β i (t + wi - ri,j)            (5) 

d i,j  – fixed priority of job  Ti,j, when it is scheduled and 

starts running:         di,j = β i (s i,j + wi - ri,j)                 (6) 
 

2.4. Our Algorithm 
In this system, the events are new job arrival, job 

completion, and reaching the break point of a job. The 

algorithm takes action when a new job arrives, a 

running job completes, or when a running job reaches 

its break point. When new jobs arrive they will be 

prioritized, and partitioned among the processors. The 

job on top of each stack is the job that is running and all 

other jobs in the stacks are preempted. 
 

A. Prioritizing: 

The priority of each ready and unscheduled job 

(located in each pool) at time t which is denoted by di.j(t) 

(for t   si,j ) is variable with time. However, when a job 

Tk (k can be any i,j) starts its execution, its priority is 

calculated as d’k = β k (sk + wk – rk) (lines 19 and 68 of 

the pseudo-code). The notation d’k is used for the fixed 

priority of the running job Tk on top of the stack. This 

priority is given to the job Tk when it starts its execution. 

Its start time, sk, is used in the function instead of 

variable t, therefore its priority is no longer dependent 

on time. Since sk , wk and rk are all constants, the priority 

of a job will not change after its start time (for t > sk ).  
 

B. Scheduling / Execution / Preemption: 

Once a new job Ti,j is released, if there is a 

processor such that its stack is empty (lines 11 through 

22), then the newly released job is pushed onto the stack 

and starts running. If there is no idle processor, but for 

any running processor di,j(t) > 4d’k  (lines 58 through 

66), the job Ti,j preempts the currently running one, and 

starts its execution. The analysis [9] shows that the 

factor 4 in the preemption condition (di,j(t) > 4d’k) plays 

role in constant ratio competitiveness being equal to 

10C
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C. Online Partitioning (Load-Balancing/Greedy):  

If more than one high priority job is able to preempt 

some running job(s), to decide which job should be sent 

to which stack, we send the largest job to the processor 

with the minimum remaining work load, the second 

largest job to the processor with the second smallest 

remaining work load, so on so forth. This way we are 

able to balance the work load among the processors. 

 However, in case there is only one high priority job 

at a time instance which can preempt more than one 

running job, we assign it to the stack of the processor 

with minimum remaining execution time (Greedy 

approximation). If the priority of the released job is not 

high enough to be scheduled right away, it will be 

partitioned among the pools of the processors using an 

online choice of load balancing or Greedy 

approximation (lines 39 through 75). 

  

D. Reaching Break Point: 

If a job reaches its break point and its execution is 

not completed yet, it will not be able to gain any benefit; 

therefore, it will be popped from the stack and sent to 

the garbage collection. The break point or deadline of a 

job is either its period or twice its execution time after it 

starts running, whichever is less. 
 

E. Reward Accumulation / Completion / Discarding: 

When a currently running job on a processor 

completes, it is popped from the stack. Then, the 

processor runs the next job on its stack (i.e. resumes the 

last preempted job) if di,j(t) ≤ 4d’k for all the jobs Ti,j in 

its pool. Otherwise, it gets the job with max di,j(t) from 

its pool, pushes it onto the stack and runs it. The 

completed jobs or those that reach their break points are 

going to be sent to the garbage collection. If a job 

completes before reaching its break point, its gained 

benefit is calculated and added to the total benefit. 
  

3. FUTURE WORK 
Ongoing work conducts both theoretical and 

experimental performance analysis of this algorithm. In 

order to compare it with state-of-the-art, we consider 

metrics such as total gained reward, tardiness and 

overall response time. It also studies the upper bounds 

on task utilization. 
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