
Online Semi-Partitioned Multiprocessor Scheduling of Soft

Real-Time Periodic Tasks for QoS Optimization

Behnaz Sanati, Albert M. K. Cheng

Department of Computer Science, University of Houston, Texas, USA

Emails: {bsanati; acheng}@cs.uh.edu

Abstract—In this paper, we propose a novel semi-

partitioning approach with an online choice of two

approximation algorithms, Greedy and Load-Balancing,

to schedule periodic soft real-time tasks in

homogeneous multiprocessor systems. Our objective is

to enhance the QoS by minimizing the deadline misses

and maximizing the total reward or benefit obtained by

completed tasks in minimum response time. Many real-

time applications and embedded systems can benefit

from this solution including but not limited to video

streaming servers, multi-player video games, cloud

applications, medical monitoring systems, and IoT.

Keywords: Periodic tasks, Quality of service, Partitioning,

Multiprocessor scheduling, Approximation algorithms.

1. INTRODUCTION

Multiprocessor systems are widely used in a fast-

growing number of real-time applications and embedded

systems. Two examples of such systems are Cloud

applications [1] and IoT [2]. In hard real-time systems,

meeting all deadlines is critical, while in soft real-time

systems, missing few deadlines does not drastically

affect the system performance. However, it would

compromise the quality of the service.

 In such systems, jobs meeting their deadlines

will gain a reward (also called benefit). Hence,

researchers focus on maximizing rewards to improve the

QoS. Besides the total reward, other factors also

influence QoS, such as overall response time (makespan

plus scheduling time) and deadline-miss ratio.

Multiprocessor real-time scheduling algorithms may

follow a partitioned or global approach or some hybrid

of the two, called semi-partitioning.

Global scheduling can have higher overhead in at

least two respects: the contention delay and the

synchronization overhead for a single dispatching queue

is higher than for per-processor queues; the cost of

resuming a task may be higher on a different processor

than on the processor where it last executed, due to

inter-processor interrupt handling and cache reloading.

The latter cost can be quite variable, since it depends on

the actual portion of a task’s memory that remains in

cache when the task resumes execution, and how much

of that remnant will be referenced again before it is

overwritten [1]. These issues are discussed at some

length by Srinivasan et al. [3]. Elnably et al. [1] study

fair resource allocation and propose a reward-based

model for QoS in Cloud applications. In contrast,

Alhussian, Zakaria and Hussin [4] prefer global

scheduling and try to improve real-time multiprocessor

scheduling algorithms by relaxing the fairness and

reducing preemptions and migrations.

Amirijoo, Hansson and Son [5] discussed

specification and management of QoS in real-time

databases supporting imprecise computations. Reward-

based scheduling of periodic tasks has also been studied

by Aydin et al. [6], and Hou and Kumar [7]. Aweruck et

al. [8] proposed a reward-maximizing model for

scheduling aperiodic tasks on uniprocessor systems

which can also be applied to multiprocessors. We have

also previously studied reward-based scheduling of

aperiodic real-time tasks on multi-processor systems.

We proposed two algorithms, GBBA [9] and LBBA

[10], and provided performance analysis and

comparative experimental results of those algorithms

versus another state-of-the art algorithm [8].

Significant improvements obtained by LBBA

method, especially in reducing the overall response time

(i.e., scheduling time plus makespan of the task sets), in

addition to maximizing the total reward and minimizing

tardiness, showed promising enhancement in QoS. That

encouraged us to expand our research to solving the

problem of scheduling periodic (and sporadic) soft real-

time tasks on multi-processor systems, on which

relatively very little research has been done. LBBA is

using partitioning strategy for aperiodic tasks. Now to

extend it for scheduling periodic (and sporadic) tasks,

we use semi-partitioning at job boundaries.

Semi-partitioned real-time scheduling algorithms

extend partitioned ones by allowing a subset of tasks to

migrate. Given the goal of “less overhead,” it is

desirable for such strategy to be boundary-limited, and

allow a migrating task to migrate only between

successive invocations (job boundaries). Non-boundary-

limited schedulers allow jobs to migrate, which can be

expensive in practice, if jobs maintain much cached

state.

Previously proposed semi-partitioned algorithms

for soft real-time (SRT) tasks such as EDF-fm and EDF-

os [11], have two phases: an offline assignment phase,

where tasks are assigned to processors and fixed tasks

mailto:acheng%7d@cs.uh.edu

(which do not migrate) are distinguished from migrating

ones; and an online execution phase. In their execution

phase, rules that extend EDF scheduling are used. The

goal in these strategies is to minimize tardiness.

In this paper, we propose a new online reward-

based semi-partitioning approach to schedule periodic

soft real-time tasks in homogeneous multiprocessor

systems. We use an online choice of two approximation

algorithms (Greedy approximation and Load-Balancing)

for partitioning, which provides an optimized usage of

processing time. In this method, no prior information is

needed. Hence, there is no offline phase.

Our objective is to enhance the QoS by

minimizing tardiness and maximizing the total reward

obtained by completed tasks in minimum makespan.

Therefore, we allow different jobs of any task get

assigned to different processors (migration at job

boundaries) based on their reward-based priorities and

workload of the processors. This method can also direct

SRT systems with mixed set of tasks (aperiodic,

sporadic and periodic) by defining their deadlines

accordingly.

Many real-time applications can benefit from this

solution including but not limited to video streaming

servers, multi-player video games, mobile online

banking and medical monitoring systems. For example,

consider mobile banking applications that are set to send

monthly statements, weekly or daily balance notific-

ations (periodic) and also notifications when a check is

posted or the balance is less than specific amount

(aperiodic).

Another example is a medical monitoring application

installed on a physician´s laptop or smart phone which

periodically receives the patients´ vital signs, such as

blood pressure, number of heart beat, breathing per

minute, etc. from the body sensor networks attached to

the patients. It process and records them periodically

and in case they go out of range and the situation is

critical, sends alert (aperiodic). In the next sections, we

explain our novel semi-partitioning hybrid model, which

combines reward and cost models, for optimizing

quality of service in soft real-time systems.

2. OUR CONTRIBUTION

2.1. System and Task Model
A multiprocessor system with m identical processors

is considered for partitioned, preemptive scheduling of

periodic soft real-time task sets with implicit deadline.

Each processor has its own pool (for ready tasks), stack

(for preempted and running tasks) and garbage

collection (for completed and tasks which missed

deadlines). Each periodic task may be released at any

time. Tasks are independent in execution and there are

no precedence constraints among them. Pre-emption is

allowed. A desired property of the system in this

method is the possibility to delay jobs without

drastically reducing the overall system performance.

2.2. Our Methodology
Semi-Partitioning Model:

 This algorithm applies online semi-partitioning. In

our partitioning approach, no job migration is allowed.

In other words, each job, i.e. an instance of a task, will

be assigned to a processor at release time, based on its

priority and worst-case execution time, and also the

current workloads of the processors, and it has to stay

with that processor during its entire runtime in the

system. However, different instances of a periodic task

may be assigned to different processors. This method is

possible since each processor has its own pool for the

ready tasks assigned to it.

Online Choice of Approximation Algorithms:

 We consider Greedy and Load-balancing approx-

imation algorithms, one of which will be chosen online

based on the conditions of the system at each time

instance, for partitioning and scheduling task instances

in order to optimize the CPU usage, minimize the

makespan and prevent starvation of low priority tasks.

We explain it in more details in subsection 2.4.

2.3. Definitions

Periodic Tasks:

A periodic task, in real-time systems, is a task that is

periodically released at a constant rate. Usually, two

parameters are used to describe a periodic task Ti; its

execution wi as well as its period pi. An instance of a

periodic task (i.e release) is known as a job and is

denoted as Ti,j, where j=1, 2, 3, … . The deadline of a

job is the arrival time of its successor. For example, the

deadline of the jth
 job of Ti, which is Ti, j, would be the

arrival time of job Ti,(j+1), that is at jpi.

Notations:

We define the notations used throughout this paper

as follows:

ri,j – release time of job Ti, j

wi – execution time of job , simply considered as

workload of job Ti, j in this paper

pi – period of task Ti

si,j – start time of job Ti, j

ci,j – completion time of job Ti,,j

Bri,j – break point or deadline of job Ti,,j, is the minimum

of: Bri,j = min (pi || si,j +2wi) (1)

βi(t) – benefit density function of task Ti at time t, for (t

≥ wi), which is a non-increasing, non-negative function,

with the following restriction to be satisfied for each

βi(t):

 (2)

Note: for t < wi, there would be no benefit gained by job

Ti,j, since it has certainly not completed its execution at

time t.

f i,j – flow time of job Ti,j:

 fi,j= ci,j - ri,j (3)

b i,j – benefit, gained by a completed job Ti,j :

b i,j = wi. β i (f i,j) (4)

LBBA Algorithm for Periodic Tasks

1 Required: One or more jobs arrive at time t ≥ 0

2 {

Job Arrival

 3 /* TempList: list of ready jobs waiting for

 4 distribution among processors */

 5

 6 Append the arrived job(s) to the TempList

Benefit-Based Scheduling

7 Calculate the priority of each job Ti,j in the

 8 TempList:

 9 d i,j (t) = βi(t + wi - ri,j)

 10 Sort TempList based on the priority

 11 If (at least one stack is empty)

 12 {

 13 Push the highest priority job(s) Ti,j

 14 onto empty stack(s) of idle processor(s) l;

 15 Add its execution time wi to total workload

 16 of the stack of the processor l (∑ Wsl),

 17 Recalculate total workload of processor l:

 18 Wl = ∑ Wpl + ∑ Wsl

 19 Calculate the fixed priority of j using its

 20 start time si,j:

 21 d’i,j(t) = βi(si,j + wi – ri.j)

 22 Start executing j,

 23 }

 24 Else

 25 {

 26 /* no stack is empty */

 27 /* preempt if possible otherwise distribute

 28 among the pools */

29 Compare the priority of the ready jobs in

30 TempList with the priority of the running

31 jobs (indicated by index k) on top of the

32 stacks:

33 If (di,j(t) ≤ 4d’k for (each job Ti,j in TempList

34 and each running job Tk))

35 {

36 /* no preemption allowed */

37 /* partition the ready jobs among

38 pools of the processors */

Load-Balancing Approximation (for Partitioning)

39 For (each job Ti,j in TempList)

40 {

41 Sort the processors in ascending order of

42 their total remaining workload on their

43 pools and stacks:

44 Wl = ∑ Wpl + ∑ Wsl

45 Append the jobTi,j with largest

46 execution time wi to the pool of the

47 processor l with minimum remaining

48 work load; /* load balancing */

49 Remove Ti,j from TempList;

50 Add its execution time wi to total

51 workload of the pool of processor l

52 (∑ Wpl);

53 Recalculate total workload of

54 processor l:

55 Wl = ∑ Wpl + ∑ Wsl

56 }

57 }

58 Else

59 /* if (di,j(t) > 4d’k) then (Ti,j preempts Tk)*/

Greedy Approximation (multiple-choice Preemption)

60 /* If Ti,j has more than one choice of

61 processors, it will be pushed onto

62 the stack whose processor has the

63 least work load (greedy) */

64 {

65 Stop the execution of job k (preempt k),

66 Push the job Ti,j onto the stack on top of Tk,

67 Start executing Ti,j,

68 Calculate the fixed priority of Ti,j using its

69 Start time si,j,: d’i,j(t) = βi(si,j + wi – ri,j)

70 Add the execution time of Ti,j to the total

71 workload of that stack (∑ Wsl),

72 Recalculate total workload of the

73 Processor l:

74 Wl = ∑ Wpl + ∑ Wsl

75 }

Check for missed Deadlines

76 /* at each time instance t, if any of the running jobs

77 on top of the stacks has reached its break point:

78 (t > Bri,j), Bri,j = min (pi || si,j +2wi)

79 remove the job from the stack and send

80 it to the processor Garbage Collection

81 otherwise, if not preempted, continue its

82 execution */

Benefit Gained by Completed Jobs

83 /* for every completed job Ti,j calculate bi,j */

84 bi,j = wi. βi(fi,j)

85 }

Total Benefit Calculation

86 /* calculate the sum of all benefits gained,

87 B is initially set to zero*/

89 B = B + bi,j

90 }

d i,j (t) – variable priority of job Ti,j at time t, before

scheduling (t < si,j): d i,j (t) = β i (t + wi - ri,j) (5)

d i,j – fixed priority of job Ti,j, when it is scheduled and

starts running: di,j = β i (s i,j + wi - ri,j) (6)

2.4. Our Algorithm
In this system, the events are new job arrival, job

completion, and reaching the break point of a job. The

algorithm takes action when a new job arrives, a

running job completes, or when a running job reaches

its break point. When new jobs arrive they will be

prioritized, and partitioned among the processors. The

job on top of each stack is the job that is running and all

other jobs in the stacks are preempted.

A. Prioritizing:

The priority of each ready and unscheduled job

(located in each pool) at time t which is denoted by di.j(t)

(for t si,j) is variable with time. However, when a job

Tk (k can be any i,j) starts its execution, its priority is

calculated as d’k = β k (sk + wk – rk) (lines 19 and 68 of

the pseudo-code). The notation d’k is used for the fixed

priority of the running job Tk on top of the stack. This

priority is given to the job Tk when it starts its execution.

Its start time, sk, is used in the function instead of

variable t, therefore its priority is no longer dependent

on time. Since sk , wk and rk are all constants, the priority

of a job will not change after its start time (for t > sk).

B. Scheduling / Execution / Preemption:

Once a new job Ti,j is released, if there is a

processor such that its stack is empty (lines 11 through

22), then the newly released job is pushed onto the stack

and starts running. If there is no idle processor, but for

any running processor di,j(t) > 4d’k (lines 58 through

66), the job Ti,j preempts the currently running one, and

starts its execution. The analysis [9] shows that the

factor 4 in the preemption condition (di,j(t) > 4d’k) plays

role in constant ratio competitiveness being equal to

10C
2
.

C. Online Partitioning (Load-Balancing/Greedy):

If more than one high priority job is able to preempt

some running job(s), to decide which job should be sent

to which stack, we send the largest job to the processor

with the minimum remaining work load, the second

largest job to the processor with the second smallest

remaining work load, so on so forth. This way we are

able to balance the work load among the processors.

 However, in case there is only one high priority job

at a time instance which can preempt more than one

running job, we assign it to the stack of the processor

with minimum remaining execution time (Greedy

approximation). If the priority of the released job is not

high enough to be scheduled right away, it will be

partitioned among the pools of the processors using an

online choice of load balancing or Greedy

approximation (lines 39 through 75).

D. Reaching Break Point:

If a job reaches its break point and its execution is

not completed yet, it will not be able to gain any benefit;

therefore, it will be popped from the stack and sent to

the garbage collection. The break point or deadline of a

job is either its period or twice its execution time after it

starts running, whichever is less.

E. Reward Accumulation / Completion / Discarding:

When a currently running job on a processor

completes, it is popped from the stack. Then, the

processor runs the next job on its stack (i.e. resumes the

last preempted job) if di,j(t) ≤ 4d’k for all the jobs Ti,j in

its pool. Otherwise, it gets the job with max di,j(t) from

its pool, pushes it onto the stack and runs it. The

completed jobs or those that reach their break points are

going to be sent to the garbage collection. If a job

completes before reaching its break point, its gained

benefit is calculated and added to the total benefit.

3. FUTURE WORK
Ongoing work conducts both theoretical and

experimental performance analysis of this algorithm. In

order to compare it with state-of-the-art, we consider

metrics such as total gained reward, tardiness and

overall response time. It also studies the upper bounds

on task utilization.

REFERENCES
[1] A. Elnably, K. Du, P. Varman, “Reward scheduling for QoS in cloud

applications,” in Proc. of the 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, 2012.

[2] J. Gubbi, R. Buyya, S. Marusic , M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”

Future Generation Computer Systems 29 (2013) 1645–1660

[3] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah, “The case

for fair multiprocessor scheduling,” in Proc. of the 11th International

Workshop on Parallel and Distributed Real-time Systems, April

2003.

[4] H. Alhussian, N. Zakaria, F. A. Hussin, “An efficient real-time

multiprocessor scheduling algorithm,” in Journal of Convergence
Information Technology, January 2014.

[5] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and

management of QoS in real-time databases supporting imprecise

computations,” in IEEE Transactions on Computers, vol. 55, pp.

304–319, March 2006.

[6] H. Aydin, R. Melhem, D. Mosse and P. M. Alvarez, “Optimal

reward-based scheduling for periodic real-time tasks,” in IEEE
Transactions on Computers, vol. 50, no. 2, February 2001.

[7] I-H. Hou, P.R. Kumar, ”Scheduling periodic real-time tasks with

heterogeneous reward requirements,” in Proc. of the 32nd IEEE

Real-Time Systems Symposium, 2011.

[8] B. Awerbuch, Y. Azar, and O. Regev, “Maximizing job benefits

online,” in Proc. of the 3
rd

 International Workshop, APPROX,

Germany, September 2000.

[9] B. Sanati and A.M.K. Cheng, “Maximizing job benefits on
multiprocessor systems using a greedy algorithm,” in WiP session of

the 14th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), April, 2008.

[10] B. Sanati and A.M.K. Cheng, “Efficient Online Benefit-Aware

Multiprocessor Scheduling Using an Online Choice of

Approximation Algorithms,” in Proc. of the 11th IEEE International

Conference on Embedded Software and Systems (ICESS 2014),

Paris, France, August 20-22, 2014.
[11] J.H. Anderson, J.P. Erickson, U.C. Devi, B.N. Casses, “Optimal

semi-partitioned scheduling in soft real-time systems,” in Proc. of the

20th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), August 20-22,

2014.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Erickson,%20J.P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Devi,%20U.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Casses,%20B.N..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900045
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900045

