
Slot-Level Time-Triggered Scheduling on COTS
Multicore Platform with Resource Contentions

Ankit Agrawal, Gerhard Fohler
Chair of Real-Time Systems
TU Kaiserslautern, Germany
{agrawal,fohler}@eit.uni-kl.de

Jan Nowotsch, Sascha Uhrig
Airbus Group Innovations

Munich, Germany
{jan.nowotsch,sascha.uhrig}@airbus.com

Michael Paulitsch
Thales Austria GmbH

Vienna, Austria
michael.paulitsch@thalesgroup.com

I. INTRODUCTION AND MOTIVATION

A number of safety-critical domains, such as avionics, use
time-triggered (TT) architectures for reasons of reliability, ease
of certification, reduced integration and maintenance costs,
system-wide determinism, etc. [1].

The move to multicore platforms poses a number of funda-
mental problems for real-time scheduling in particular, even
in idealized scenarios without consideration of overheads or
platform characteristics. COTS multicore platforms generally
share various hardware resources such as on-chip network,
memory sub-system etc. amongst cores, introducing resource
contentions and inter-core interferences. This results in large
variability1 in the execution time of a task depending on
the latency and number of inter-core interferences from co-
executing tasks on the other cores. Further, the execution
of each new task, in turn, introduces additional inter-core
interferences, affecting the variability in execution time of
already co-executing tasks. E.g., it is shown in [2] that the
single store request latency increases by 25.82 times when the
number of active cores are increased from 1 to 8.

These challenges effect TT systems even more, as sched-
ules have to be determined offline. The extension of offline
scheduling to multicore platforms raises great concern in
safety-critical application domains using single core platforms.
E.g., in the avionics domain, in which certification and long
product life are essential, only very limited steps are currently
considered: The position paper from EASA and FAA proposes,
as next step, at most 2 active processing cores [3]. Even with
only one core active, certification is a challenge.

The problem of scheduling for TT systems on COTS mul-
ticore platform considering inter-core interferences is difficult
because of three primary reasons: Firstly, we need to provide
guarantees that offline computed bounds on variability in
execution time of each task will hold at runtime, warranting
runtime regulation of inter-core interferences during task exe-
cution. Secondly, we need to bound the variability in execution
time of a task in the offline phase considering possible run-
time inter-core interferences and task’s deadline, as reserving
hardware resources for each task considering worst-case inter-

1By variability in execution time of a task, we mean the variability
introduced beyond the traditional single-core WCET due to the inter-core
interferences in a multicore system.

core interferences would be very pessimistic. Finally, we need
to estimate at design time the maximum runtime inter-core
interferences for each task in each slot, as we cannot obtain
this information using traditional static WCET analysis tools
due to unavailability of architecture models for the complex
COTS multicore processors.

Related Work In [4], Yun et al. propose controlling memory
accesses from all but one cores to limit inter-core interferences
experienced by hard real-time tasks executing on just 1 core.
Yun et al. extended the work in [5] allowing all cores to
execute hard real-time tasks by regulating memory accesses
using a memory server on each core. However, they assume
that the given memory server budget reservations for each core
are constant for each server period. Yao et al. [6] present a
method to bound variability in execution time of each task on
all cores considering round-robin arbitration between cores for
memory accesses. However, the work does not consider ad-
ditional arbitration and contention delay introduced by shared
on-chip network in the analysis. In [2], [7], Nowotsch et al.
consider a timeline divided into unequal length process frames
and provide a method that bounds variability in execution
time of each task in a given process frame by considering
maximum inter-core interferences in the offline phase. The
runtime mechanism enforces the offline computed bound in
each process frame. However, they impose restrictions such
as a new task is only allowed to execute on the completion of
all tasks in a process frame.

A common way of operation in TT systems is to assume a
minimum temporal granularity of operation, called slots [1],
at runtime. Offline, a schedule table is created which assigns
parts of task executions to these slots. Slots can be seen as units
of resource reservation, i.e., reserving chunks of CPU time to
the assigned tasks. In this paper, we propose to extend these
reservations to several resources. We propose a two-part slot-
level based resource-control method using a TT scheduling
approach that enables the use of multicore platforms for
executing hard real-time tasks in TT systems. We propose
a runtime mechanism consisting of two servers running on
each core - processing time server and memory access server
- each having a fixed server period equal to the slot length.
We guarantee the offline computed bound on variability in
execution time of each task by enforcing offline computed slot-
level server budget reservations on each core, thereby limiting

inter-core interferences from co-executing tasks, as well as,
additional inter-core interferences introduced by the task under
consideration. In the offline phase, we propose to generate
schedule table containing mapping, scheduling and server
budget reservations, that bounds the variability in execution
time of each task due to inter-core interferences, such that all
tasks meet their deadlines. The computation of the bound on
variability in execution time of each task involves estimating
maximum inter-core interferences from already scheduled co-
executing tasks in each slot, as well as, limiting the slot-level
inter-core interferences that may be introduced by the task at
hand, at runtime.

Overall, our proposed method considers a real COTS mul-
ticore platform - Freescale P4080 - and accounts for the
delay introduced by arbitration and contention in the on-
chip network and the memory sub-system. Further, we did
a preliminary bare-metal implementation of our proposed
runtime mechanism on the P4080 platform. Moreover, our
method adheres to the TT architecture model [1] preserving
system-wide properties like slot-level determinism, clock syn-
chronization, etc., enabling integration of COTS multicores in
safety-critical systems using a TT approach.

II. SYSTEM MODEL, TASK MODEL, AND JOB MODEL

A. System Model

We consider an abstract multicore hardware architecture
inspired by the readily available real COTS multicore system
- Freescale QorIQ P4080 platform [8]. We focus only on the
hardware resources essential for task scheduling on the P4080
platform. These are 8 e500mc cores, the memory sub-system,
and the crossbar CoreNet on-chip network. Along similar
lines, we assume that the abstract multicore hardware com-
prises only two types of hardware resources: N homogeneous
processing cores (including private caches) from 1,..,n,...,N,
and 1 shared resource consisting of a on-chip network with
a memory sub-system. As this work is a first step, we only
consider 1 memory controller in the memory sub-system,
even though the P4080 platform has 2 memory controllers.
Further, we assume that the hardware mechanisms like pre-
fetchers, cache-coherency etc., that may implicitly introduce
unaccounted inter-core interferences are disabled.

The inter-core interference latency, includes the time taken
by a load/store request issued from a core to access the
on-chip network and the memory sub-system, considering
contentions. We consider the same latencies for our abstract
multicore architecture as used in [2], [7]. The measurement-
based approach as described in [9], using which these latencies
are obtained, tries its best to create worst-case inter-core
interference scenario, but is not guaranteed to do so, as
the hardware model is not provided by Freescale. However,
this is not a potential limitation of our proposed method in
Section III as, when available, it will also work with inter-
core interference latencies obtained through static analysis.

As shown in Table I, the latency of inter-core interference
varies with the number of active processing cores partly due
to varying arbitration delay from shared hardware resources.

Each inter-core interference latency δj depends on the j
number of active cores. E.g., as shown in Table I, if (say)
j = 3 cores are active from time [t, t + 1), we consider all
inter-core interferences that occur during this time interval to
have latency δ3 (worst case) as listed in column 2 in Table I.

We consider a time-triggered (TT) scheduling approach and
assume the timeline is divided into fixed equal length slices
called slots [1]. A slot St,n represents a time interval [t, t+1),
(where t is an integer multiple of slot length |S|) on core n. We
also assume the system is preemptive at each slot boundary.

TABLE I: Inter-core interference latency and corresponding memory
access server budget reservation for different number of active cores

No. of
active cores

(j)

Inter-core
interference latency
(δj in clock cycles)

Memory access server
budget reservation in

1ms (Accj)
1 41 29385
2 164 7346
3 245 4917
4 463 2602
5 517 2330
6 737 1634
7 784 1536
8 1007 1196

B. Task Model and Job Model
The set Γ represents V hard real-time periodic tasks with

arbitrary deadlines. Each task τi is characterized by the tuple
〈Csi ,MAi, Ti, Di〉, where, Csi is the single core WCET ex-
cluding the time taken by memory accesses, MAi is the max-
imum number of memory accesses to the shared resource, Ti
is the period, and Di is the relative deadline. Csi and MAi are
obtainable using a combination of static timing analysis tool
like aiT and measurements [7]. Tasks may have precedence
and communication constraints specified in graph G.

In our proposed method (Section III), as we allow each
instance of a task to have a different bound on variability in
execution time, we convert the given task set to jobs, where
each instance of a task is a job. The set J represents all jobs
W of all tasks in a task set Γ in time [0, H), where H is the
hyperperiod of the task set Γ. Each job τi,k is characterized
by the tuple 〈Csi,k,MAi,k, C

m
i,k, ri,k, di,k〉. Csi,k and MAi,k are

same across all jobs of task τi. Cmi,k is the multicore execution
time i.e. the bound on variability in execution time of job
τi,k, computed offline, considering possible runtime inter-core
interferences. Cmi,k may differ between different jobs of the
same task τi. ri,k is the absolute release time and di,k is the
absolute deadline of job Ji,k, which are computed based on
the related parameters of the corresponding task.

III. PROPOSED SLOT-LEVEL BASED METHOD

In this section, we present our slot-level based method using
a TT scheduling approach. The runtime mechanism is de-
scribed in Section III-A and the offline phase in Section III-B

A. Runtime mechanism
We propose two server types - processing time server and

memory access server, implemented using built-in hardware
monitors. Each server type runs on each core and controls
only one type of resource.

1) Processing time server: On each core n, a processing
time server τspn regulates the execution time in each server
period based on the slot-level server budget reservations com-
puted in the offline phase. During runtime, an executing job
at time t consumes the server budget reservation Qspn,t for
the computation time on core n and stall time due to cache
misses and/or memory accesses, resulting in a corresponding
decrease of the server budget.

2) Memory access server: The memory access server τsmn

regulates the total number of memory accesses allowed from
each processing core n in each slot St based on slot-level
offline computed server budget reservations Qsmn,t, thereby
controlling the inter-core interferences. At runtime, an execut-
ing job uses the server budget reservation only for memory
accesses, resulting in a decrease of server budget by 1 for
each memory access issued.

3) Runtime behaviour: During runtime, each core-level
scheduler, at the start of each slot, assigns a job to the respec-
tive core and sets the corresponding server budget reservations
for each server based on the schedule table obtained in the
offline phase. On each core, if the budget of any server
reaches 0, the corresponding core-level scheduler suspends the
executing job, irrespective of the remaining budget of the other
server. Jointly, the two servers on each core guarantee that the
server budget reservations provided for each slot in the offline
schedule table hold at runtime, thereby enabling bounding of
variability in execution time for each job in the offline phase
considering possible runtime inter-core interferences.

4) Inter-relationship amongst two servers, slots, and inter-
core interference latencies: We consider the server period of
each server is equal to the slot length |S|. For each processing
time server instance, we allow only two mutually exclusive
server budget reservation values: Either the budget reservation
equals to zero which means an idle slot (no task is allowed
to execute), or it equals to some fixed positive value X
chosen by the system designer, such that X ≤ |S|. For each
memory access server instance, we allow N + 1 mutually
exclusive server budget reservation values. The N different
budget reservation values directly associate with the different
number of active cores. An additional budget reservation value
of 0 relates to the idle slot, resulting in a total of N + 1
possible budget reservation values. Based on the description
of each server, the relationship between the server budget
reservations of the two servers and the inter-core interference
latency δj , for each active core n, is given by the formula
Qsmn,t =

⌊
Qspn,t

δj(t)

⌋
,∀t, where j represents the number of

active cores at time t. E.g., we consider a slot length |S| of
1ms and processing time server budget of 1ms. Table I then,
shows the memory access server budget reservation values
Accj (column 3) for j active processing cores (column 1).

5) Preliminary implementation: We did a preliminary bare-
metal implementation of our proposed runtime mechanism
running on all cores of the P4080 COTS multicore plat-
form. We implemented the processing time server using the
multicore programmable interrupt controller (MPIC) timer

that enables slot-level synchronization amongst all cores. The
MPIC timer also allows to set multiple processing cores as
interrupt recipients, and provides each recipient core a unique
interrupt copy [8]. We implemented the memory access server
using a core-level hardware performance monitor that counts
requests to the on-chip network [10]. We implemented our
proposed suspension rules in interrupt service routines of the
MPIC timer and hardware performance monitor on each core.

Though the idea to regulate memory accesses from each
core using memory access server may seem similar to Mem-
Guard [5], there are three key differences. Firstly, Mem-
Guard considers minimum guaranteed memory bandwidth
as constant, whereas our proposed method considers it as
variable depending on the number of active cores (see Table
I). Secondly, MemGuard assumes the memory server budget
reservations for each core as given and constant across all
server periods, whereas we do not make such an assumption.
Thirdly, MemGuard does not consider if the given server
budgets meet task deadlines, whereas our proposed method
(introduced later in the Section III-B) gives offline guarantees.

B. Offline phase: Bounding variability in execution time

In the offline phase, we bound the variability in execution
time of each job by computing server budget reservations for
each slot, such that all tasks meet their deadlines. This limits,
at runtime, the maximum inter-core interferences from co-
executing jobs as well as the additional inter-core interferences
introduced by the job under consideration.

In the offline phase, let’s consider at slot St on core n,
the offline scheduler tries to schedule job τi,k, such that
the job τi,k meets its deadline without affecting the already
scheduled jobs. In order to compute the multicore execution
time Cmi,k, the offline scheduler first tries the simple case,
where it considers a job τi,k executes in each slot on some
core n with constant memory access server budget reservation
Accj . In this simple case, we compute the multicore execution
time of job τi,k using the formula Cmi,k =

⌈
Csi,k +

MAi,k

Accj

⌉
based on some memory access server budget reservation Accj
chosen by the offline scheduler (slot length S of 1ms).

However, it is possible that the offline scheduler is unable
to find and reserve enough slots for the job τi,k that fulfill
chosen memory access server budget reservations Accj on core
n until its deadline. In that case, we propose a different way
to compute the multicore execution time.

Let’s consider on core n, in the time [t, t + z + 1), due
to already scheduled jobs on remaining cores, the offline
scheduler only finds slots with different memory access server
budget reservations in time [t, t+ z+ 1). Then (say) from slot
St+z+1, the scheduler finds slots with constant memory access
server budget reservations Accj′. In this case, we propose to
first determine the minimum progress the job τi,k can make
in time [t, t + z + 1) (both computation time and memory
accesses). Then, we subtract the same while computing the
remaining multicore execution time cmi,k(t + z + 1) based on
new budget reservation Accj′ from time t+z+1 onwards. The
offline scheduler then reserves the slots in time [t, t+ z + 1)

with the available server budget reservations, and from time
t+ z + 1 to t+ z + cmi,k(t+ z + 1) with Accj′. If the job τi,k
still cannot meet its deadline, the offline scheduler will try to
reschedule some already scheduled jobs, e.g., by backtracking.

IV. EXAMPLE

Figure 1 shows an example of our proposed method con-
sidering only 2 cores due to the space constraints. Each core
n has two servers: processing time server τspn and memory
access server τsmn

, with server period equal to the slot length
|S| of 1ms. For each server, the dotted horizontal lines depict
the possible server budget reservation values. During runtime,
at the start of each slot, each core-level scheduler assigns a
job to the respective core and sets the corresponding server
budgets for each server, based on the offline schedule table.

At time t = 0, as both the cores are active, each core-
level scheduler sets the corresponding processing time server
budget reservation to 1ms and memory access server budget
reservation to Acc2 = 7346 accesses (based on Table I). At
time t = 1ms, only job τ0,0 is active resulting in memory
access server budget Qsm1,1 = Acc1 = 29385 accesses (based
on Table I) and processing time server budget of 1ms. In the
time interval [1, 1.33)ms, the job τ0,0 issues memory access
as shown by corresponding decrease in memory access server
budget. Then in the time interval [1.33, 2)ms, it does not
perform any memory accesses as shown by memory access
server budget being constant. Later, it again briefly issues
memory accesses for the next 100µs. In the time interval
[1.6, 2)ms, since, only the processing time server budget
decreases and not the memory access server budget, the job
τ0,0 only performs computations. At time t = 3ms, the job τ1,0
completes execution and the scheduler of core 2 discards the
unused memory access server budget from the previous server
instance τsm2,2. Further, at time t = 3ms, as only job τ0,0 is
active, the memory access server budget Qsm1,3 equals Acc1.
The job τ0,0 issues memory accesses in the first half of the slot
as shown by decrease in memory access server budget. Then,
for the next 200µs, it does not issue any memory accesses
as the memory access server budget does not decrease and at
time t = 3.7ms completes execution, resulting in discarding
of unused server budgets by the core-level scheduler.

V. CONCLUSION AND FUTURE WORK

In this work, we presented an initial step towards enabling
time-triggered (TT) scheduling on a real COTS multicore plat-
form P4080. It takes into account inter-core interferences in the
on-chip network and the memory sub-system. Our proposed
method comprises a runtime mechanism and an offline phase.
For the runtime mechanism, we proposed a processing time
server and a memory access server for each core. Jointly, the
two servers on each core, enforce slot-level offline computed
server budget reservations, thereby limiting the maximum
inter-core interferences introduced and experienced by each
task considering different inter-core interference latencies. In
the offline phase, we proposed a procedure for the offline
scheduler to compute the bound on variability in execution

τsm1

τsp1

Core 1

τsm2

τsp2

Core 2

0.0 1.0 2.0 3.0 4.0
Time t (ms)

S

Acc1

Acc2

S

Acc1

Acc2

τ0,0

τ1,0 τ1,0

τ0,0 τ0,0

Fig. 1: Example of our proposed slot-level based method

time of each task while allowing different slot-level mem-
ory access server budget reservations. Overall, our proposed
method facilitates integration of COTS multicore platforms in
TT systems, while maintaining features of TT architecture like
slot-level determinism, clock synchronization, etc.

We did a preliminary bare-metal implementation of our pro-
posed runtime mechanism on a real COTS multicore platform
P4080. In future work, we aim to provide safe bounds for the
variability in execution time and will integrate the procedure
in our existing offline scheduler to generate schedule tables
containing mapping, schedule and server budget reservations.

ACKNOWLEDGMENT

The work was supported by ARTEMIS project 621429
EMC2. We thank the referees for several useful comments.

REFERENCES

[1] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2nd ed. Springer-Verlag, 2011.

[2] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement,” in Real-Time Systems (ECRTS),
2014 26th Euromicro Conference on, July 2014, pp. 109–118.

[3] CAST-32 Multi-core Processors. Certification Authorities Software
Team, May 2014.

[4] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on,
July 2012, pp. 299–308.

[5] ——, “Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms,” in Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), 2013 IEEE
19th, April 2013, pp. 55–64.

[6] G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha,
“Schedulability analysis for memory bandwidth regulated multicore real-
time systems,” Computers, IEEE Transactions on, vol. 65, no. 2, pp.
601–614, Feb 2016.

[7] J. Nowotsch and M. Paulitsch, “Quality of service capabilities for hard
real-time applications on multi-core processors,” in Proceedings of the
21st International Conference on Real-Time Networks and Systems, ser.
RTNS ’13. New York, NY, USA: ACM, 2013, pp. 151–160.

[8] P4080 QorIQ Integrated Multicore Communication Processor Family
Reference Manual Rev. 2, Freescale Semiconductor, 2014.

[9] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in Dependable Computing Conference (EDCC),
2012 Ninth European, May 2012, pp. 132–143.

[10] e500mc Core Reference Manual Rev. 3, Freescale Semiconductor, 2013.

