
I/O contention aware mapping of multi-criticalities
real-time applications over many-core architectures

Laure Abdallah and Mathieu Jan
CEA, LIST, Embedded Real Time Systems Laboratory

F-91191 Gif-sur-Yvette, France
Email: Firstname.Lastname@cea.fr

Jérôme Ermont and Christian Fraboul
IRIT INP-ENSEEIHT, Université de Toulouse

F-31000 Toulouse, France
Email: Firstname.Lastname@enseeiht.fr

Abstract—Many-core architectures are more promising hard-
ware to design real-time systems than multi-core systems asthey
should enable an easier mastered integration of a higher number
of applications, potentially of different level of criticalities. How-
ever, the worst-case behavior of the Network-on-Chip (NoC)for
both inter-core and core-to-Input/Output1 (I/O) communications
of critical applications must be established. The mapping over
the NoC of both critical and non-critical applications has an
impact on the network contention these critical communications
exhibit. So far, all existing mapping strategies have focused on
inter-core communications. However, many-cores in embedded
real-time systems can be integrated within backbone Ethernet
networks, as they mostly provide Ethernet controllers as I/O
interfaces. In this work, we first show that Ethernet packetscan
be dropped due to an internal congestion in the NoC, if these core-
to-I/O communications are not taken into account while mapping
applications. To solve this issue, we show on an avionic casestudy
the benefits of the core-to-I/O contention-aware mapping strategy
we propose.

I. I NTRODUCTION

The continuous need in increased computational power has
fueled the on-going move to multi-core architectures in hard
real-time systems. However, multi-core architectures arebased
on complex hardware mechanisms, such as for instance ad-
vanced branch predictors whose temporal behavior is difficult
to master. Many-core architectures are instead based on simpler
cores, so the timing predictability of cores are thus easierto
analyze [10]. Besides, they should enable the safe simultaneous
integration of both critical and non-critical applications [2].
Many-cores are thus promising hardware to host such a mix
of real-time applications with different levels of criticalities.
Note that we consider only two levels of criticalities in the
remainder of this work: critical and non critical. The main
challenge however lies in the ability to analyze the Worst-Case
Traversal Time (WCTT) of critical flows exchanged within
the Network-on-Chip (NoC). How hard real-time tasks that
generate these critical flows, but also the non critical tasks,
are mapped within cores, is therefore of utmost importance to
control the contention over the NoC and thus the WCTT of
flows. In the remainder of this paper, we simply say that we
map flows over a NoC to avoid linking flows to tasks.

The efficiency of a mapping strategy over a NoC can
be evaluated using different performance metrics. Hard-real
time applications rely on the latency metric, as the goal is
to minimize the WCTT of flows. Several contention aware
mapping strategies (for instance [3], [11], [14]) have thus
been proposed but for inter-core communications only. To

1 We use this term for both core communications from or to I/O interfaces.

the best of our knowledge, none consider communications
between cores and with I/O interfaces, that we call core-to-I/O
communications1. However, many-cores mainly provide DDR
and Ethernet controllers only as I/O interfaces. For instance,
Tilera [12] provides 3 Ethernet and 4 DDR controllers, while
MPPA [5] from Kalray provides 8 Ethernet and 2 DDR
controllers. Theses many-cores are thus more tailored to host
embedded applications whose I/O data are exchanged using
Ethernet packets.In embedded real-time systems, many-cores
can be used as processing elements within a backbone Ethernet
network, such as AFDX for the avionic domain or Ethernet
AVB in the automotive field.

Mapping strategies for many-cores should therefore also
take into consideration core-to-I/O communications, in addi-
tion to other core-to-core and core-to-memory communica-
tions. To demonstrate this strong requirement, the first con-
tribution of this paper is to show that Ethernet packets can be
dropped due to an NoC congestion, if I/O requirements are not
taken into account when mapping applications. To this end, we
rely on a case study from the avionic domain. It is made of
a critical Full Authority Digital Engine (FADEC) application
and a non-critical Health Monitoring (HM) application of the
engine, used for recognizing incipient failure conditions. We
thus propose an approach to map critical and non critical real-
time applications over many-cores that reduces the WCTT of
core-to-I/O communications. It is based on an existing strategy
but in which we treat core-to-I/O communications as first class
citizen. Our algorithm first assigns for each application tomap
a region within the NoC. Then, each task of an application is
mapped within its region, so that the paths used by core-to-
I/O communications from the Ethernet controller exhibit the
lowest contention possible. We show for two variants of our
case study that our algorithm successfully find a mapping that
avoids Ethernet packets, whose payload are making the core-
to-I/O communications, to be dropped. This demonstrates the
benefits of our proposal compared to a state of the art mapping
strategy that fails to do so.

II. PROBLEM FORMULATION

To illustrate the problem we address, we use an avionic
case study made of a FADEC and an HM application. For
the FADEC, 1270 bytes of sensors data from the engine are
received by an Ethernet interface. These data are then divided
and distributed to 6 tasks, notedtf0 to tf5. These 6 tasks
exchange 211 bytes of data between them. All these tasks also
send 211 bytes of data to a last task notedtf6. Then, tf6
stores 110 bytes within a DDR interface and sends 64 bytes of
actuators data through an Ethernet interface. On the other hand,



ETH

DDR

port 1port 2port 3port 4port 5

tf4

tf0

tf3

tf2 tf1

tf6 tf5

th0

th1

th2th3

th4

th5th6

th7

th8 th9

t

th12th13t

th10

h11

h14

(0,0)

(3,6)(3,0)

(0,6)

Fig. 1. Arbitrary mapping of FADEC and HM applications.

the HM application continuously receives through an Ethernet
interface, a set of frames representing data to be processed
in order to anticipate engine failures. The size of a frame is
130 KBytes and a set is made of 30 frames. When a set of
frames is received, every two frames are assigned to a different
task amongst 15 tasks, notedth0 to th14. When the processing
takes place, taskthi also sends 112 bytes of data tothi+1,
with i ∈ [0, 14]. Finally, all these tasks, finish their processing
by storing their frames into the DDR.

Figure 1 shows an arbitrary mapping of these 2 applications
over a7 × 4 mesh NoC, shipped with a single giga-Ethernet
interface. This Ethernet interface is thus shared between the
two applications. This NoC configuration is not artificial asit
can be seen as a subset of an initial largerN ×N NoC that
therefore leads to consider several instances of the problem we
introduce in this section. A core of the NoC is identified by its
(x,y) coordinates and we assume that (0,0) is located on the
bottom left of the NoC. The square3 × 3, whose left corner
is located at (0,0) defines the regions where the tasks of the
FADEC application are mapped. The square4× 4, located at
(0,3), defines the region where the HM applications is mapped.
Let us now describe the steps input I/O data received by an
Ethernet interface go through in order to be used by a core
of the NoC (blue and red arrows for respectively the HM
and FADEC applications). We assume that Ethernet packets
have a Maximum Transmit Unit (MTU) of 1500 bytes. We
further assume that NoC packets can be made of up to 19 flow
control digits (flits), as in the Tilera many-core. A flit is equal
to 32 bits. The size of an Ethernet packet is thus generally
several factors higher than the size of a NoC packet. Several
NoC packets are therefore needed to transmit to a core an
Ethernet payload, that must therefore be buffered within the
Ethernet interface. Reaching a destination core can eitherbe
done directly or through an intermediate DDR controller. This
choice is left to the user, and the last option is the case thatwe
consider in this work. Note that I/O FADEC data are sent to
the port 1 of the DDR, and can later be used from for instance
either the port 4 or 5 of the DDR.

Flits of NoC packets are transmitted one by one by routers,
i.e. in a pipeline way, by relying on wormhole switching
strategy, with an dimension ordered XY routing policy and
Round-Robin Arbitration (RRA) within routers. As routers
have buffers of a few flits due to the area cost of memories in
chips, flits of a same packet can thus be present on different
routers. A NoC congestion occurs when a contention between
two flows a at given router propagate backward due to the
credit-based mechanism, preventing flits of other flows to also
make progress.In this work, we first consider the paths
taken by flows originating from an Ethernet interface when

0

HM

12.336
1500

14.772

12.336
FADEC

HM

Ethernet

Buffer ETH

ETH To DDR

delay (μs)

delay (μs)

Buffer ETH
utilization

(Bytes)

10.49

0

0 0

Fig. 2. Timeline of Ethernet and NoC packets showing that theFADEC
Ethernet packet is dropped when the mapping of Figure 1 is used.

reducing the contentions, as we claim that many-core will
be used as processing elements within a backbone Ethernet
network.If a NoC congestion occurs on one of these paths,
the estimated WCTT of a flow can be higher than the
arrival delay of the next incoming Ethernet packet. In that
case, this Ethernet packet may be dropped due to the lack of
space in the Ethernet buffer. Previous Ethernet packets could
indeed be stored in this buffer while waiting associated NoC
flows can progress towards the DDR interface. Note that in
this work we neglect the time a DDR request takes, however
this delay would only increase the global one.

At both the Ethernet and NoC levels (and up to the DDR
only), the Figure 2 shows the timeline of a frame from the
HM application followed by one from the FADEC application.
When the HM frame with payload size of 1500 bytes arrives
at the single giga-Ethernet interface, i.e. after 12.336µs (link
traversal), it is stored into the interface buffer. Thus, ifwe
consider that the Ethernet buffer size is 2 KB, as in Tilera,
the buffer can only receive frames with 500 bytes of payload.
Then FADEC frame can only be stored if all the HM frame
has been transmitted to the DDR, as its size is 1270 bytes. The
transmission of HM frame at the NoC level will use 20 packets
of 19 flits and one packet of 15 flits. The WCTT of each HM
packets on the NoC takes701.5 ns. This value is obtained by
reusing an existing method that gives the tightest WCTT values
over RRA-based NoC [1]. Other strategies will therefore lead
to even higher WCTT values and worsen the situation. We
define the worst-case scenario as when each of these NoC
packets will be blocked at each router by all NoC flows that
can be encountered. So, as the HM frame is decomposed into
21 NOC packets, the global transmission delay of an HM
frame to the DDR through the NoC will taket1 = 14.772µs.
However, the transmission of the FADEC frame on Ethernet
takest2 = 10.49µs (transmission of 1270 bytes of payload
at 1Gb/s). As the Ethernet buffer still contains the HM frame
when the FADEC frame arrives, ast1 > t2, then FADEC frame
is dropped. Therefore, the mapping proposed in Figure 1 does
not take into account the I/O requirements leading to losing
frames. The goal of the paper is then to propose a mapping
approach considering the I/O transmission on the NoC.

III. L IMITATIONS OF EXISTING WORK

However, to the best of our knowledge, no mapping strate-
gies for many-cores take into account core-to-I/O communica-
tions. We thus briefly review in this section existing contention-
aware mapping strategies for core-to-core communicationsand
discuss their limitations with respect to our problem.

Different strategies exist to reduce the number of con-
tention flows on the path of the transmitted flows ([3], [11],
[14], [13]) using minimization functions. However, all these
approaches consider only the mapping of a single application.



Conversely, [6] considers the mapping of several applications
by arbitrarily dividing the NoC into clusters. Each cluster
is dedicated to an application. Then, within each cluster a
congestion-aware mapping heuristic, similar to one in [14],
minimizes the bandwidth utilization of NoC links. Authors
of [4] enhance the definition of clusters for applications by
making them near convex regions. Generating non-contiguous
regions is avoided, thus reducing the congestion that can
occur between applications, called the external congestion.
But, due to the first core selection policy when building
regions, mapping of an application over a fragmented region
is possible [9]. In order to solve this problem, [9] propose
to select the core having the most available neighbors (up
to 4) to avoid region fragmentation and thus decrease both
internal and external congestions. This solution, called CoNA,
only considers direct neighbors when selecting the first core
and then still lead to fragmentation of areas [7]. Smart Hill
Climbing (SHiC) approach [7] considers a new metric called
square-factor (SF) for selecting the first core when building
regions. The SF of a core is the maximal size of the square
area in which that core can be put in, to which the number of
free cores around this square is added. The first core is then the
one having a SF greater or equal to the size of the applicationto
be mapped, i.e. the number of cores that are needed assuming
a core can only execute a single task. [8] adapts SHiC so
that contiguous regions as used to map critical applications,
in order to reduce contentions, while non-critical applications
are mapped over non-contiguous regions to increase the system
throughput.

SHiC is the best congestion-aware mapping approach
which is the closest related work to ours. The mapping done
in Figure 1 has been in fact obtained using SHiC. As we can
see, SHiC, and also all others existing mapping strategies,does
not consider where I/O interfaces are located within the NoC
when mapping applications. The NoC core-to-I/O flows may
therefore suffer from external congestions, if the applications
are not mapped close to the I/O interfaces they use. However,
these interfaces could be shared between several applications.
Besides, the internal mapping of applications also influence
the WCTT of these core-to-I/O flows. Mapping the most
communicating task to the first selected core, as most existing
strategies do, may no longer be appropriate. The number of
contentions core-to-I/O flows experiences should instead be
reduced, so that their WCTT are decreased and avoid dropping
incoming I/O packet. Finally, SHiC defines strict contiguous
regions preventing the mapping of a set of applications whose
total size is equal to the size of NoC.

IV. PROPOSAL OVERVIEW

To overcome these limitations, our approach also relies on
a two steps process to map applications of different levels
of criticalities. In this paper, instead of giving the mapping
algorithms, we propose to describe our approach using on
overview of these two steps. We currently assume a single
Ethernet controller for the I/O interface, a single critical
application amongst a set of non-critical applications anda
single core-to-I/O flow per application, called core-to-Ethernet.

The first step of our mapping process, called theexternal
mapping, assigns to each application a region and determine its
shape. Our second step then maps the tasks of each application
within its assigned region. When the sum of the size of each
application is equal to the size of the NoC, i.e there is no free

ETH

tf3

tf6

tf5

tf0 tf2tf1

tf4th0

th1

th2th3

th4

th5th6

th7

th8 th9

t

th12th13t

th10

h11

h14

DDR

port 1port 2port 3port 4port 5

Fig. 3. Mapping of the FADEC and HM applications using our approach.

cores available, the external mapping starts with the critical
application and assigns to it a region next to the Ethernet
interface. In the other case, the external mapping consider
the non-critical applications first. It starts to map them from
the opposite side where the Ethernet interface is located. The
critical application is thus the last one to be considered, in
order to gather remaining free cores within its corresponding
region. These cores will be used to provide more laxity in the
second step of our mapping process when mapping the critical
application. When assigning a region to an application, we
consider the minimal rectangular shape that corresponds toits
size and favors biggest shapes in next assignment of regions.

The second step of our mapping process is called the
internal mapping. When mapping applications, its goal is to
reduce the WCTT of NoC core-to-I/O flows for both the
critical and non-critical applications. To this end, the internal
mapping reduces the number of contentions on the paths taken
by these flows according to different specific rules. On the
example of Figure 3, the available free cores within the region
of the critical application are put in priority on the path taken
by core-to-I/O flow. Note that for application that are not
mapped on the paths taken by core-to-I/O flows, we rely on
the SHiC strategy.

Figure 3 shows the final mapping that our approach gen-
erates for our case study. Remember that it is composed of
28 cores, as it is a7× 4 mesh NoC. The FADEC application
requires 7 cores, while the HM application requires 15 cores.
The total size of both applications is thus22, leaving initially6
free cores. The external mapping therefore starts by assigning
a region to the HM application. To this end, a4 × 4 square
region is defined and located at (0,0). One free core is thus
lost and left unused when defining this region. The FADEC
application is then assigned a3×4 rectangular region, located
at (0,4), and that integrates the5 remaining free cores. The
internal mapping uses4 free cores, amongst the5 available in
its region, in a2×2 square area next to the Ethernet controller.

V. PRELIMINARY EVALUATION

First, let us assume that the internal mapping maps the
applications by following the SHiC strategy. Compared to
the mapping shown by Figure 1, the mapping of applications
is thus simply permuted. For this mapping, the WCTT for
reaching the DDR by a NoC packet of the core-to-Ethernet
flow of the HM application is610 ns. This leads to a WCTT
for the core-to-Ethernet flow of12.8 µs. This delay is thus
reduced compared to the one shown by Figure 2. However,
it is still higher than what is required to avoid dropping the
the FADEC Ethernet packet. This demonstrates the need for a



Ethernet

delay (μs)

Buffer ETH

Buffer ETH
utilization

(Bytes)

ETH To DDR

0

HM

12.336

1500

0.98

12.336
FADEC

1270

HM
0.83

FADEC

22.8

13.3

10.49

delay (μs)

0

0 0 0

23.6

Fig. 4. Timeline of Ethernet and NoC packets showing that theFADEC
Ethernet packet is no longer dropped when mapped using our approach.

strategy in the internal mapping that further reduces the WCTT
of the NoC core-to-I/O flows of non-critical applications, in
addition to the critical one.

Let us now assume that our internal mapping takes advan-
tage of the free cores gathered by our external mapping. This
corresponds to the mapping shown by Figure 3. The timeline
of Figure 4 shows that the FADEC Ethernet packet is no
longer dropped in that case. The free cores are indeed located
on the path taken by the Ethernet-to-core NoC flows of the
FADEC and HM applications. These flows are thus no longer
blocked while progressing towards the DDR. The WCTT of
NoC core-to-Ethernet packets (made of19 flits) from the HM
application is thus reduced to47.15 ns. The global WCTT
of the corresponding NoC flow of the HM application is then
0.98 µs thanks to our approach where the internal mapping
reduces the number of blocking flows with the core-to-Ethernet
flow. The HM Ethernet packet is therefore removed from the
Ethernet buffer before the FADEC Ethernet packet arrives to
the Ethernet interface. The global WCTT of the NoC core-to-
Ethernet flow from the FADEC application is0.83 µs.

We also evaluated our approach when all the cores of the
NoC are used. To this end, we added two taskstf7 andtf8 to
the FADEC application. These additional tasks have the same
characteristics as the taskstf0 to tf5. For the HM application,
we reduced the number of tasks from15 to 12 tasks. We
assume a reduced7× 3 mesh NoC. Compared to the mapping
shown by Figure 1, SHiC mapstf7 andtf8 at respectively (2,0)
and (2,2). In this case, the same timeline as the one of Figure2
is obtained. The FADEC Ethernet frame is thus still dropped.
When however considering our approach, the external mapping
assigns to the FADEC application a3× 3 square region next
to the Ethernet interface. The internal mapping of the FADEC
application leads to a WCTT of483.5 ns for the NoC core-
to-Ethernet packets of the HM application. This corresponds
to a global WCTT of10.15 µs for reaching the DDR. The
FADEC frame can thus reaches the Ethernet interface after the
removal of the HM Ethernet packet from the Ethernet buffer.
This example shows that our approach seems promising even
if all the core of the NoC are used.

VI. CONCLUSION AND FUTURE WORK

Existing contention-aware mapping strategies aim to min-
imize the inter-core congestion without taking into account
requirements of I/O communications of applications. How-
ever, a NoC is mostly connected to other external systems
through several Ethernet interfaces. The WCTT of NoC core-
to-Ethernet flows depends on the congestions generated by the
mapping of both critical and non-critical applications.

In this paper, we first show on an avionic case study
that the solution generated by a state of the art contention-
aware mapping strategies even lead to drop Ethernet packets

used by a critical application, when mapped together with
a non-critical application. We then show on the same case
study that a two steps mapping strategy solve this issue. An
external mapping step assigns the critical application near the
considered Ethernet interface and reclaim free cores for the
definition of the region where the critical application will
be mapped in. Within this region, an internal mapping step
reduces the contention both NoC core-to-Ethernet criticaland
non-critical flows experience. Work underway shows that our
approach can be successfully applied over other case studies.
Next step is the generalization and formalization of the internal
mapping rules.

Further work includes the development of a software tool
implementing our mapping strategy as well as consider all
types of flow in our mapping strategy. We are also interested
in generalizing our algorithm by supporting additional core-
to-I/O flows, several critical applications and I/O interfaces.

REFERENCES

[1] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. Wormhole networks
properties and their use for optimizing worst case delay analysis of
many-cores. In10th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 59–68, Siegen, Germany, June 2015.

[2] A. Burns, J. Harbin, and L. S. Indrusiak. A wormhole noc protocol for
mixed criticality systems. InProc. of the IEEE 35th Real-Time Systems
Symposium, RTSS, pages 184–195, Rome, Italy, December 2014.

[3] C.-L. Chou and R. Marculescu. Contention-aware application mapping
for network-on-chip communication architectures. InIEEE Intl. Conf.
on Computer Design (ICCD), pages 164–169, 2008.

[4] C.-L. Chou, U. Y. Ogras, and R. Marculescu. Energy-and performance-
aware incremental mapping for networks on chip with multiple voltage
levels. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(10):1866–1879, 2008.

[5] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-
critical computing on a single-chip massively parallel processor. In
Proc. of the Conf. on Design, Automation & Test in Europe (DATE’14),
pages 97:1–97:6, 2014.

[6] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes. Dynamic
task mapping for mpsocs.Design & Test of Computers, 27(5):26–35,
2010.

[7] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila.Smart hill
climbing for agile dynamic mapping in many-core systems. InProc. of
the 50th Annual Design Automation Conference, page 39, 2013.

[8] M. Fattah, A.-M. Rahmani, T. C. Xu, A. Kanduri, P. Liljeberg, J. Plosila,
and H. Tenhunen. Mixed-criticality run-time task mapping for noc-
based many-core systems. In22nd Euromicro Intl. Conf. on Parallel,
Distributed and Network-Based Processing (PDP), pages 458–465.
IEEE, 2014.

[9] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg, andJ. Plosila.
Cona: Dynamic application mapping for congestion reduction in many-
core systems. In30th Intl. Conf. on Computer Design (ICCD), pages
364–370, 2012.

[10] V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca, M. Bertogna,
E. Quiñones, R. Vargas, and A. Marongiu. The Challenge of Time-
Predictability in Modern Many-Core Architectures. In14th Intl. Work-
shop on Worst-Case Execution Time Analysis, pages 63–72, Madrid,
Spain, July 2014.

[11] A. Racu and L. S. Indrusiak. Using genetic algorithms tomap hard real-
time on noc-based systems. In7th Intl. Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8, 2012.

[12] Tilera corporation.Tile processor user architecture manual, Nov. 2011.
UG101.

[13] B. Yang, L. Guang, T. Säntti, and J. Plosila. Tree-model based
contention-aware task mapping on many-core networks-on-chip. Com-
munications in Information Science and Management Engineering,
2012.

[14] C. Zimmer and F. Mueller. Low contention mapping of real-time tasks
onto tilepro 64 core processors. In18th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 131–140, 2012.


