
Memory-aware Response Time Analysis
for P-FRP Tasks

Xingliang Zou, Albert M. K. Cheng
Department of Computer Science

University of Houston
Houston, TX, 77004, USA

Email: xzou@uh.edu, cheng@cs.uh.edu

Abstract—Functional Reactive Programming (FRP) is playing
and potentially going to play a more important role in real-time
systems. Priority-based (preemptive) FRP (P-FRP), a variant of
FRP with more real-time characteristics, demands more research
in its scheduling and timing analysis. In a P-FRP system, similar
to a classic preemptive system, a higher-priority task can preempt
a lower-priority one and make the latter aborted. The lower-
priority task will restart after higher-priority tasks complete
their execution. Unlike the classic preemptive model, when a task
aborts, all the changes made by the task are discarded (abort and
restart). In previous studies, the value of Worst Case Execution
Time (WCET) of a task is used for all its restarted tasks. However,
in practice the restarted tasks likely consume less time than the
WCET when considering the memory effect such as cache-hit
in loading code and data. In this work, we use different task
execution time for restarted tasks when conducting schedulability
and response time analysis for P-FRP tasks.

I. INTRODUCTION

There are two distinct types of programming paradigms in
computer programming: imperative and functional. Functional
Programming has a distinct difference from imperative pro-
gramming in that it is immune to side-effects caused by using
states and mutable data. Since the formal system of λ-calculus
(lambda-calculus) was first devised by Church [1] and Kleene
[11], many functional programming languages have been in-
vented: LISP, Ocaml, Haskell, Scheme, Erlang, F#, Atom,
Scala and so on. Haskell and Erlang have been studied and
commercially developed intensively. Scala is recently adopted
by companies such as Linkedin, Twitter and Walmart [7].
Functional Reactive Programming (FRP) [16] is a framework
for constructing reactive applications using the building blocks
of functional programming.

In real-time systems, the correctness of a program is
measured by its logical output as well as its ability to complete
within certain time limits. FRP is demonstrated to be effective
in modeling and building reactive systems such as graphics,
robotic and vision applications. However, another significant
feature of real-time systems, priority, is not considered in FRP.
To address this problem, the P-FRP [10] model has been
proposed as a variant of the FRP model. P-FRP maintains
both the type-safety and the state-less execution paradigm
of FRP, and supports priorities assigned to different tasks
while not requiring the use of synchronization mechanisms

∗The work is supported in part by the United States National Science
Foundation (NSF) under awards No. 0720856 and No. 1219082.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 2

1

1

1
2
3

2
1 2

3

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t

12 23 3

1 1 12 2 2 2 2 2 2 22 3 333 3

2



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t
1 1 12 2 2 2 2 2 223 3

2 2

2

2 2

2 2
1

3

1 1 1

1

1

1 1

(a) Classic Model0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 2

1

1

1
2
3

2
1 2

3

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t

12 23 3

1 1 12 2 2 2 2 2 2 22 3 333 3

2



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t
1 1 12 2 2 2 2 2 223 3

2 2

2

2 2

2 2
1

3

1 1 1

1

1

1 1

(b) P-FRP Model

Fig. 1: Schedules of fixed priority task set
(C1 = 1, C2 = 2, C3 = 2, T1 = 5, T2 = 4, T3 = 20)

between tasks in the system. It has the potential to transform
the building of more and more complicated Cyber Physical
Systems (CPSs). Christoffersen and Cheng [8] presented an
impact of P-FRP in building controllers in automobile anti-
lock brake systems.

In order to maintain the state-less paradigm of the FRP
model, unlike the classic preemptive scheduling (shortened to
classic model) (Fig.1.(a)), P-FRP uses an Abort and Restart
(Fig.1.(b)) semantics where if a lower-priority task is inter-
rupted by a higher-priority task, it has to restart from the
beginning when it is resumed. Here we consider a typical
task life cycle without being interrupted (cold started task):
(1) code is loaded from hard drive and data is loaded from
external memory; (2) computation is done by processor(s); (3)
results are committed to external memory. In the P-FRP model,
the time spent in phase (2) and (3) is wasted when a task is
aborted, however, since the existence of memory hierarchy, the
time spent in phase (1) can be less when a task is restarted, for
example, the task code is still in cache and does not need to be
read from slow external memory again. This memory effect is
not considered in previous studies of P-FRP systems. In this
paper, we present our preliminary memory-aware P-FRP task
response time analysis and experimental results.

II. SYSTEM MODEL AND RELATED WORKS

We consider a hard real-time uniprocessor system with
hierarchical memory components. n-task system Γn =



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 2

1

1

1
2
3

2
1 2

3

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t

12 23 3

1 1 12 2 2 2 2 2 2 22 3 333 3

2



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 21

1
2
3

2 2 2
2 2

1 1 11

3

t
1 1 12 2 2 2 2 2 223 3

2 2

2

2 2

2 2
1

3

1 1 1

1

1

1 1

Fig. 2: Memory-aware P-FRP scheduling of fixed priority
task set (C1

1 = 1, C2
1 = 1;C1

2 = 2, C2
2 = 1;C1

3 = 2, C2
3 =

1;T1 = 5, T2 = 4, T3 = 20)

{τ1, τ2, ..., τn} of periodic tasks with fixed priorities is sched-
uled in the P-FRP abort and restart model. Task τi is assigned
a unique fixed priority i (1 ≤ i ≤ n), where 1 is the highest
priority and n is the lowest. An instance or invocation of a
periodic task is called a job. Jk

i refers to the k-th job of τi.
Each periodic task τi is characterized by a constant arrival
time period Ti between two successive jobs of the task, a
relative deadline Di(Di ≤ Ti), and two computation times:
C1

i and C2
i , the execution time of the task in cold started and

restarted modes respectively. The Response Time (RT) of a job
is the time between the release of a job and its completion.
The response time of a task in a given priority assignment is
the largest response time among those of all its jobs. A task
is referred to as schedulable according to a given scheduling
policy if its response time under the given scheduling policy
is less than or equal to its deadline. A task set is referred to
as schedulable according to a given scheduling policy if all
of the tasks in the task set are schedulable under the given
scheduling policy.

Jiang et al presented their research on P-FRP task schedu-
lability analysis in [13][14] to find tighter feasibility intervals.
Belwal and Cheng have shown in [3] that RM is not optimal
in P-FRP systems with synchronous release and it is even
unknown if there exists an optimal one other than an exhaustive
test over all possible priority assignment algorithms. Belwal
and Cheng [2] presented a utilization-based analysis that
the current schedulability condition only holds true with the
utilization bound of 1/n under certain restrictions on periods
and release scenarios. Wong et al [5] conducted research on
other priority assignment algorithms: Utilisation Monotonic
(UM), Execution-time Monotonic (EM), and a combination
of UM and EM, Execution-time-toward-Utilisation Monotonic
(EUM) priority assignment algorithm. By comparing with an
Exhaustive Search schema, they confirmed that none of RM,
DM, EM or EUM is optimal for the P-FRP model. Zhou et
al [9] presented their research on WCRT and schedulability
analysis for real-time software transactional memory-lazy con-
flict detection for P-FRP tasks. Wong et al [6] proposed the
Deferred Abort model to reduce the number of preemptions in
scheduling P-FRP tasks. Zou et al [12] proposed a non-work-
conserving Deferred Start model to eliminate preemptions in
scheduling P-FRP tasks. However, none of these researches
considers the different execution time of cold started tasks
and restarted tasks. On the other hand, Kazemi and Cheng
[15] studied the P-FRP task execution time on a scratchpad
memory-based platform, and showed that the task execution
time changes because of the memory hierarchy.

3 4 5 6 7 8

f=1.0 772 873 936 919 733 572

f=0.7 595 687 790 787 635 517

f=0.5 410 525 642 668 565 469

0
100
200
300
400
500
600
700
800
900

1000

N
u

m
b

er o
f U

n
sch

ed
u

lab
le Tasks 

N-task set 

Fig. 3: Number of Unschedulable Task Sets

III. OUR WORK

A. Memory-aware P-FRP model

In Fig.1, we schedule three tasks with a given priority
assignment under the classic model and the P-FRP model. If
the execution time of a task in cold start and restart cases
are different, we will have a memory-aware P-FRP model
scheduling as Fig.2 shows.

In Fig.2, the second job of τ2, J2
2 , is preempted at time

point 5 since it requires 2 time units of cold start execution
time (C1

2 ) and executes only 1 time unit when the second job
of the highest priority task τ1 is scheduled to execution. And
when J2

2 is resumed at time point 6, it needs only 1 time unit
of restart execution time (C2

2 ) and hence finishes execution at
time point 7. For the job J3

2 that arrives at time point 8, it
requires 2 time units of cold start execution time and finishes
execution at time point 10. The similar scheduling applies to
task τ3. We can see, under the same priority assignment and
scheduling policy, compared to Fig.1(b) of P-FRP scheduling,
in time interval of [0, 20) the number of preemptions is reduced
from 4 to 2, the CPU idle time unit is increased from 0 to 4.
Also, the response time of τ2 is reduced from 4 to 3, and the
response time of τ3 is reduced from 20 to 8. Thus the memory-
aware P-FRP scheduling saves CPU time and potentially is
able to schedule more tasks.

B. Experiment and Result

The experiments are designed and conducted on a desktop
computer with a CPU of i3-4130 3.4GHz, 8 GB memory
and Ubuntu 14.04.3 LTS 64-bit Desktop operating system. We
generate task sets and run the P-FRP scheduling with and
without considering memory effect. The task sets we generated
have 3, 4, ..., 8 tasks respectively; the periods are randomly
generated in range of [15, 75]; the total utilization of a task
set is 0.6. We use the UUniFast algorithm [4] to generate
n (n = 3, 4, .., 8) utilization factors Ui (1 ≤ i ≤ n) in a
descending order such that the total utilization U =

∑n
i=1 Ui

equal to the given value, 0.6 in this experiment. We then
shuffle those Ui to a random order for the consideration of
generalization. The computation time of each task is computed
as C1

i = Ui ∗ Ti, C2
i = C1

i ∗ f , where f is a factor that shows
the difference of task execution time in cold start and restart.
f is 0.7 and 0.5 in our experiments. As comparison, we also
run the task sets in original P-FRP model, which is equivalent
to f=1.0. For each n-task set, we generate 1000 task sets.



Fig.3 shows the number of unschedulable task sets with
different f for the n-task sets (n = 3, 4, .., 8) we generated.
The case of f=0.7 has 22.9%, 21.3%, 15.6%, 14.4%, 13.4%
and 9.6% less unschedulable task sets compared to the original
P-FRP scheduling. The case of f=0.5 has 46.9%, 39.9%,
31.4%, 27.3%, 22.9% and 18.0% less unschedulable task sets
compared to the original P-FRP scheduling. Thus the memory
effect of restarted P-FRP tasks must not be ignored.

IV. CONCLUSION AND FUTURE WORK

We have proposed our preliminary research of memory-
aware P-FRP model. Simulation results show the schedula-
bility and response time improvement when considering the
different execution time of a task in cold start and restart cases.
Our ongoing research is to present more theoretical response
time analysis and priority assignment research in the memory-
aware P-FRP task scheduling. And since the execution time
difference is likely related to data placement/locality, we will
address this difference in our multi-core P-FRP task scheduling
research too.

REFERENCES

[1] A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics 58, pp.345-363, 1936.

[2] C. Belwal, A. M. K. Cheng. A Utilization based Sufficient Condition
for P-FRP. 9th IEEE/IFIP Int’l Conf. on Embedded and Ubiquitous
Computing (EUC), 2011, pp.237-242.

[3] C. Belwal, A.M.K. Cheng. On priority assignment in P-FRP. RTAS 2010
WiP Session.

[4] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time System, 30(1-2):129-154, 2005.

[5] H. C. Wong, A. Burns. Improved Priority Assignment for the Abortand-
Restart (AR) Model. Technical Report YCS-2013-481, University of
York, Department of Computer Science, 2013.

[6] H. C. Wong, A. Burns. Priority-based Functional Reactive Programming
(P-FRP) using Deferred Abort. RTCSA 2015.

[7] https://typesafe.com/company/casestudies, 09/24/2014.
[8] K. R. Christoffersen, A. M. K. Cheng. Model-based design: Antilock

brake system with priority-based functional reactive programming. RTSS
2013 WiP Session.

[9] Q. Zhou, Y. Li, X. Zou, A. M. K. Cheng, Y. Jiang. Worst Case Response
Time and Schedulability Analysis for Real-Time Software Transactional
Memory-Lazy Conflict Detection (STM-LCD). DPRTCPS workshop,
2015.

[10] R. Kaiabachev, W. Taha, A. Zhu. E-FRP with priorities. ACM EMSOFT
2007.

[11] S. Kleene. A theory of positive integers in formal logic. American
Journal of Mathematics 57, pp.153-173 and 219-244, 1935.

[12] X. Zou, A. M. K. Cheng, Y. Jiang. A Non-Work-Conserving Model for
P-FRP Fixed Priority Task Scheduling. RTSS 2015 WiP session.

[13] Y. Jiang, A. M. K. Cheng, X. Zou. Schedulability Analysis for Real-
Time P-FRP Tasks Under Fixed Priority Scheduling. RTCSA 2015.

[14] Y. Jiang, Q. Zhou, X. Zou, A. M. K. Cheng, X. Zou. Minimal Schedu-
lability Testing Interval for Real-Time Periodic Tasks with Arbitrary
Release Offsets. IEEE ICESS 2014.

[15] Z. Kazemi, A. M. K. Cheng. A Scratchpad Memory-Based Execution
Platform for Functional Reactive System and its Static Timing Analysis.
RTAS 2015 WiP session.

[16] Z. Wan, P. Hudak. Functional reactive programming from first princi-
ples. ACM SIGPLAN PLDI 2000.


