
Preliminary Performance Evaluation of HEF
Scheduling Algorithm
Carlos A. Rincón †∗ and Albert M. K. Cheng∗

†Networking and Telematics Academic Unit, Universidad del Zulia, Maracaibo, Venezuela. Email: crincon@fec.luz.edu.ve
∗Real-time Systems Laboratory, University of Houston, Houston, USA. Email: cheng@cs.uh.edu

Abstract—The purpose of this paper is to analyze the performance
of the Highest Entropy First (HEF) scheduling algorithm for
real-time tasks. We generate multiple task sets using the Seoul
National University (SNU) real-time benchmark. The tasks were
implemented on WindRiver Workbench 3.3 to estimate the
WCET. A linear programming solution was implemented to set
the period of the tasks aiming to maximize the utilization of
the system based on a predefined hyper-period. We measure the
performance of HEF scheduling algorithm using as parameters
the number of context switches and the deadline-miss ratio. As
preliminary result we show that the number of context switches
is directly proportional to the number of tasks in a task set. The
deadline-miss ratio for all the studied cases was 0%, because the
utilization for all the task sets was at most 1 (U ≤ 1).

Keywords—Highest Entropy First; real-time systems; scheduling;
performance.

I. INTRODUCTION

In recent years the use of entropy as a parameter has been
proposed as a new approach to schedule real-time tasks [1].
In 2015, Rincon and Cheng [2] presented the mathematical
background to measure the entropy of a task set in a real-
time system as well as the design, feasibility analysis and
implementation of the highest entropy first (HEF) algorithm
to schedule real-time tasks in uni-processors.

The HEF algorithm is a new dynamic priority technique to
schedule real-time tasks that tries to minimize the uncertainty
(based on the probability of the execution of a task during the
hyper-period) of the scheduling problem by executing the task
with the highest entropy first without missing any deadline.

The purpose of the research is to measure the performance of
the highest entropy first scheduling algorithm in order to have
a guideline about the behavior of the studied algorithm under
certain conditions.

The contributions of this paper are:

• Generate multiple task sets by implementing the programs
from the SNU real-time benchmark [3] in Wind River Work-
bench 3.3 [4] to calculate the WCET and generating the
periods by using a linear programming solution aiming to
maximize the utilization of the system based on a predefined
hyper-period.

• Measure the performance of HEF algorithm to schedule real-
time tasks using as metrics the number of context switches
and deadline-miss ratio.

The rest of the paper is organized as follows. In the next
section, we describe the related work about using entropy

∗Supported in part by the National Science Foundation under Awards No.
0720856 and No. 1219082.

as a parameter to schedule real-time tasks. In section 3, we
present the design of the HEF scheduling algorithm. Section 4
presents the methodology used to generate the task set for the
performance evaluation. Section 5 presents the performance
evaluation of the HEF algorithm running the generated task
set. We give our conclusions and future work in section 6.

II. RELATED WORK

A. Entropy as a Parameter for Real-time Scheduling

Entropy is defined as the product of the information generated
by an event x and the probability of occurrence of that event
(px*Ix) [5]. Considering a periodic task system with implicit
deadlines where the worst case execution time = Ci, period
= Ti, hyper-period (hperiod) = least common multiple of the
periods and applying the information-theoretic concepts, we
define the following parameters:

Entropy of a Single Time Unit from a Scheduling Diagram
HSU : we define the information generated by a single time unit
of the scheduling diagram (Is) as log2(1/Ps), where Ps is the
probability of a single time unit = 1/hperiod. The entropy of
a single time unit = Ps ∗ Is = log2(hperiod)/hperiod bits.

Total Entropy of a Task HTask: is defined as the product
of the number of single time units on the scheduling diagram
used by a task (number of task instances times Ci) and the
entropy of a single time unit (HSU ).

HTask =
hperiod

Ti
∗ Ci ∗HSU = log2(hperiod) ∗

Ci

Ti
bits (1)

Total Normalized Entropy of a Task NHTask: is defined as
the total entropy of a task (HTask) divided by its computation
time (Ci). This parameter is critical for using entropy in real-
time systems because it prioritizes the scheduling based on the
task deadlines.

Total Entropy of the System HSys: is the summation of the
entropies of all m tasks (with m=number of tasks).

HSys =

m∑
i=1

HTaski
= log2(hperiod) ∗

m∑
i=1

Ci

Ti
bits (2)

Relationship between HSys and Utilization: Based on
Shannon’s information theory [5], we know that the maxi-
mum value of the entropy (Hx) = log2(number of possible
cases=hperiod). Then HSys ≤ log2(hperiod). Based on this
inequality, we have:

log2(hperiod) ∗
m∑
i=1

Ci

Ti
≤ log2(hperiod) (3)

This inequality is true only if U =
∑m

i=1 Ci/Ti ≤ 1.



III. THE HIGHEST ENTROPY FIRST SCHEDULING
ALGORITHM

The studied algorithm is a dynamic priority scheduler that
uses the normalized entropy of the task (NHTask) and the
total entropy of the task (HTask) to decide which task to run
first. Basically, every time the scheduler needs to decide which
task to run, it will choose the task with the highest entropy
(normalized and total), in order to minimize the complexity of
the scheduling problem.

A. Algorithm’s Design

The proposed scheduling algorithm based on entropy has the
following steps:

1) Determine the schedulability of the given task set using
the relationship between entropy and utilization proposed
in equation (3).

2) Calculate the normalized and total entropy for each task.
3) Select the task to be executed using the following criteria:

• Select the task with the highest normalized entropy.
• If two or more tasks have the highest normalized

entropy, then select the task with the highest total
remaining entropy.

• If two or more tasks have the highest total remaining
entropy and one of these tasks is the one running, then
select the task that is running (to minimize preemption),
else select the task based on its process identifier (PID).

4) Update the values of Ti and Ci for all tasks.
5) Go to step 2 until time = hperiod.

IV. GENERATING THE TASK SETS

In order to generate the tasks sets to measure the performance
of the HEF scheduling algorithm we selected 5 programs from
the SNU Real-time benchmark (sqrt.c, fibcall.c, crc.c, minver.c
and select.c). Table I shows a description of each selected
program.

TABLE I: Selected programs from the SNU real-time benchmark
Task Number SNU Program Description

1 sqrt.c Square root,function implemented
by Taylor series

2 fibcall.c Summing the Fibonacci series

3 crc.c A demonstration for CRC
(Cyclic Redundancy Check) operation

4 minver.c Matrix inversion for 3x3 floating point matrix

5 select.c A function to select the Nth largest
number in the floating point array size 20

After selecting the programs we implemented them on a server
with an Intel i7-3770 processor running at 3.4 GHz, with 16
GB of RAM and 2 TB hard drive using Wind River Workbench
3.3 to calculate the worst case execution time (WCET). We run
each program 100 times to average the results. Table II shows
the average WCET for the selected programs.

A. Task sets

To measure the performance of the HEF scheduling algorithm
we decided to use as independent variable the number of tasks
in the task set. We created 4 task sets with 2, 3, 4, and 5 tasks

respectively. For each task set we use 100 ms as the hyper-
period and applied a linear programming solution to calculate
the periods for each task (aiming to maximize the utilization
of the system). For the deadlines, we implemented a system
with implicit deadlines. Tables III and IV show the generated
task sets.

TABLE II: WCET for the selected tasks
Task Number WCET ROUND WCET

1 13.34 ms 14 ms
2 7.32 ms 8 ms
3 13.54 ms 14 ms
4 16.41 ms 17 ms
5 25.73 ms 26 ms

TABLE III: Task sets 1 and 2

Task Number Ci Ti Task Number Ci Ti

1 14 ms 50 ms 1 14 ms 100 ms
2 8 ms 12 ms 2 8 ms 50 ms

3 14 ms 20 ms

TABLE IV: Task sets 3 and 4

Task Number Ci Ti Task Number Ci Ti

1 14 ms 100 ms 1 14 ms 100 ms
2 8 ms 34 ms 2 8 ms 100 ms
3 14 ms 50 ms 3 14 ms 100 ms
4 17 ms 50 ms 4 17 ms 50 ms

5 26 ms 100 ms

The utilization of the generated task sets are: Task set 1 =
0.946666667, Task set 2 = 1, Task set 3 = 0.995294118 and
Task set 4 =0.96.

V. PRELIMINARY PERFORMANCE EVALUATION OF HEF

With the generated task sets, we run the HEF scheduling algo-
rithm to measure its performance. We calculated the number
of context switches and the deadline-miss ratio for each task
set. The results are shown in figure 1.

16
20

44 45

0 0 0 0

2 3 4 5

Number	of	Tasks	per	Task	Set

Context	Switches

Missed	Deadlines

Fig. 1: Number of context switches and deadline-miss ratio for HEF

For task set 1 (2 tasks) the number of context switches is 16
and the deadline-miss ratio is 0%, for task set 2 (3 tasks) the
number of context switches is 20 and the deadline-miss ratio
is 0%, for task set 3 (4 tasks), the number of context switches



is 44 and the deadline-miss ratio is 0% and for task set 4 (5
tasks), the number of context switches is 45 and the deadline-
miss ratio is 0%.

These results show that when the number of tasks in the task
set increases, the number of context switches increases. The
obtained deadline-miss ratio (0 missed deadlines) for all the
tasks sets is a consequence of the utilization values (less or
equal than 1 for all task sets).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a methodology to generate task
sets using the programs from the SNU real-time benchmark
(implemented on Wind River Workbench). We calculated the
periods for the tasks in the task set using a linear programming
solution to maximize the utilization of the system.

The results from the preliminary performance evaluation of the
HEF scheduling algorithm show that the number of context
switches is directly proportional to the number of tasks in the
task set. For the deadline-miss ratio, further analysis must be
made to confirm that it depends on the utilization of the system
(U ≤ 1 = no deadline misses).

The HEF algorithm has some similarities with the earliest
deadline first algorithm [6] (EDF) because selecting the task
with the lowest absolute deadline is the same as selec-
ting the task with highest normalized entropy (NHTask =
log2(hperiod)∗ 1

Ti
). However when two or more tasks have the

same absolute deadline, HEF will select the task that adds more
complexity to the scheduling problem using as a parameter the
total remaining entropy of the task. Therefore we propose as
future work to compare the performance of HEF against EDF
using the task sets generated by the methodology proposed in
this paper.

REFERENCES

[1] R. Sharma and Nitin, “Entropy, a new dynamics governing parameter in
real time distributed system: a simulation study,” IJPEDS, vol. 29, no. 6,
pp. 562–586, 2014.

[2] C. A. Rincon and A. M. Cheng, “Using entropy as a parameter to
schedule real-time tasks,” in Real-Time Systems Symposium. WiP Session,
2015 IEEE, Dec 2015, pp. 375–375.

[3] “Snu real-time benchmark suite,” http://archi.snu.ac.kr/realtime/benchmark.
[4] WindRiver, “Wind river workbench,” http://www.windriver.com.
[5] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell

System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
[6] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.


