I/O contention aware mapping of multi-criticalities real-time applications over many-cores architectures

Laure ABDALLAH (CEA)
Mathieu JAN (CEA)
Jérôme ERMONT (IRIT)
Christian FRABOUl (IRIT)
Many-cores architectures
Motivations

Many-cores architectures

Real-time applications of different level of criticalities
Many-cores architectures

Real-time applications of different level of criticalities

Avionic domain: applications from DAL A to DAL E
Motivations

Many-cores architectures

Real-time applications of different level of criticalities

Processing elements within a backbone Ethernet network
Many-cores architectures

Real-time applications of different level of criticalities

Processing elements within a backbone Ethernet network

TILERA: 3 Ethernet /4 DDR controllers
KALRAY: 8 Ethernet /2 DDR controllers
Many-cores architectures

- Real-time applications of different level of criticalities
- Processing elements within a backbone Ethernet network
- WCTT of flows over Network-on-Chip (NoC) depends on the mapping
Many-cores architectures

Real-time applications of different level of criticalities

Processing elements within a backbone Ethernet network

WCTT of flows over Network-on-Chip (NoC) depends on the mapping

Core-to-Core and Core-to-I/O communications
Many-cores architectures

- Real-time applications of different level of criticalities
- Processing elements within a backbone Ethernet network
- WCTT of flows over Network-on-Chip (NoC) depends on the mapping

Core-to-Core and Core-to-I/O communications
Many-cores architectures

Real-time applications of different level of criticalities

Processing elements within a backbone Ethernet network

WCTT of flows over Network-on-Chip (NoC) depends on the mapping

Core-to-Core and Core-to-I/O communications
NoC Architecture and Assumptions
Wormhole routing
NoC Architecture and Assumptions

Wormhole routing
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
NoC Architecture and Assumptions

Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)
Wormhole routing

Pipeline transmission of packets divided into flow control digits (flits)

Contentions propagate backwards on the path of flow
NoC Architecture and Assumptions

Wormhole routing

Core-to-I/O flow
NoC Architecture and Assumptions

Wormhole routing

Core-to-I/O flow

Payload divided into NoC packets
NoC Architecture and Assumptions

Wormhole routing

Core-to-I/O flow

Payload divided into NoC packets

Transmission into two steps
NoC Architecture and Assumptions

Wormhole routing

Core-to-I/O flow

Payload divided into NoC packets

Transmission into two steps
NoC Architecture and Assumptions

Wormhole routing

Core-to-I/O flow

Payload divided into NoC packets

Transmission into two steps
Wormhole routing

Core-to-I/O flow

Payload divided into NoC packets

Transmission into two steps

All payload received by DDR ➔ frame removed from buffer
Problem illustration

Port labels: port 5, port 4, port 3, port 2, port 1

Nodes labeled: ETH, ETH, ETH
Problem illustration

A state-of-the-art mapping of avionic applications of different size
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC

non-critical (DAL E): HM
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Transmission of Ethernet frames
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC

non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B
Problem illustration

A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Transmission of Ethernet frames
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC

non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Transmission of Ethernet frames
Problem illustration

A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC

non-critical (DAL E): HM

2 applications share the same ETH interface and each Ethernet frame has a payload of 1500B
Problem illustration

A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC

non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) ➔ FADEC can not be stored at the same time with HM

Ethernet 1G
Transmission of HM frame into NoC packets

A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC

non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\Rightarrow\) FADEC can not be stored at the same time with HM
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\Rightarrow\) FADEC can not be stored at the same time with HM

Transmission of HM frame into NoC packets

FADEC

HM

ETH

Ethernet 1G
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share the same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) → FADEC can not be stored at the same time with HM
Problem illustration

A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share the same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\Rightarrow\) FADEC cannot be stored at the same time with HM
Problem illustration

A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC

non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\Rightarrow \) FADEC can not be stored at the same time with HM

Ethernet 1G

HM

HM

HM
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) → FADEC can not be stored at the same time with HM
Problem illustration

A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\Rightarrow \) FADEC can not be stored at the same time with HM
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\rightarrow\) FADEC can not be stored at the same time with HM
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\Rightarrow \) FADEC can not be stored at the same time with HM

WCTT of HM core-to-I/O flow > arrival delay of FADEC frame \(\Rightarrow \) Drop FADEC frame
Problem illustration

A state-of-the-art mapping of avionic applications of different size

- Critical (DAL A): FADEC
- non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) ⇒ FADEC can not be stored at the same time with HM

WCTT of HM core-to-I/O flow > arrival delay of FADEC frame ⇒ Drop FADEC frame
A state-of-the-art mapping of avionic applications of different size

Critical (DAL A): FADEC
non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

Ethernet buffer is of limited capacity (TILERA: 2KB) \(\Rightarrow\) FADEC can not be stored at the same time with HM

WCTT of HM core-to-I/O flow > arrival delay of FADEC frame
\(\Rightarrow\) Drop FADEC frame
Problem illustration

A state-of-the-art mapping of avionic applications of different size

- Critical (DAL A): FADEC
- non-critical (DAL E): HM

2 applications share same ETH interface and each Ethernet frame has a payload of 1500B

- Ethernet buffer is of limited capacity (TILERA: 2KB) ➔ FADEC can not be stored at the same time with HM

WCTT of HM core-to-I/O flow > arrival delay of FADEC frame ➔ Drop FADEC frame

How to integrate the I/O requirements in the mapping?
Existing mapping strategies do not consider the core-to-I/O flows
Contributions

Existing mapping strategies do not consider the core-to-I/O flows

Our mapping heuristics
Contributions

Existing mapping strategies do not consider the core-to-I/O flows

Our mapping heuristics
Existing mapping strategies do not consider the core-to-I/O flows

Our mapping heuristics

Poster Session