Cache Persistence Aware WCRT Analysis for FPPS

Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar
Context

- CPU
- Cache
- Main Memory

Fast

Slow

Limited capacity
Context

Diagram showing the flow of data between CPU, Cache, and Main Memory. The diagram illustrates the limited capacity of the cache and the distinction between fast and slow memory access.

- **CPU** to **Cache**: Fast
- **Cache** to **Main Memory**: Slow

Limited capacity

Graphs

- T_1
- T_2
Context

Limited capacity

CPU

Fast

Cache

Slow

Main Memory

T₁

T₂

Cache Related Preemption Delay (CRPD)
Motivational Example

- Taskset \{T_1, T_2\}
 \[C_1 = 100 \text{ and } T_1 = 200\]
 \[C_2 = 400 \text{ and } T_2 = 1000\]
Motivational Example

- Taskset \{T_1, T_2\}
 - \[C_1 = 100 \text{ and } T_1 = 200\]
 - \[C_2 = 400 \text{ and } T_2 = 1000\]
Motivational Example

- Taskset \{T_1, T_2\}
 - \(C_1 = 100 \) and \(T_1 = 200 \)
 - \(C_2 = 400 \) and \(T_2 = 1000 \)
Motivational Example

- Taskset \(\{T_1, T_2\} \)
 - \(C_1 = 100 \) and \(T_1 = 200 \)
 - \(C_2 = 400 \) and \(T_2 = 1000 \)
• Taskset \(\{T_1, T_2\} \)
 \(C_1 = 100 \) and \(T_1 = 200 \)
 \(C_2 = 400 \) and \(T_2 = 1000 \)
Motivational Example

- Taskset \(\{T_1, T_2\} \)
 - \(C_1 = 100 \) and \(T_1 = 200 \)
 - \(C_2 = 400 \) and \(T_2 = 1000 \)
Motivational Example

- Taskset \{T_1, T_2\}
 - \(C_1 = 100\) and \(T_1 = 200\)
 - \(C_2 = 400\) and \(T_2 = 1000\)
Motivational Example

- Taskset \{T_1, T_2\}
 - \(C_1 = 100\) and \(T_1 = 200\)
 - \(C_2 = 400\) and \(T_2 = 1000\)
Motivational Example

- Taskset \{T_1, T_2\}
 - \(C_1 = 100\) and \(T_1 = 200\)
 - \(C_2 = 400\) and \(T_2 = 1000\)

![Diagram showing cache contents and task sets](image)
• Taskset \{T_1, T_2\}
 \[C_1 = 100\text{ and } T_1 = 200\]
 \[C_2 = 400\text{ and } T_2 = 1000\]
Motivational Example

- Taskset \(\{T_1, T_2\}\)
- \(C_1 = 100\) and \(T_1 = 200\)
- \(C_2 = 400\) and \(T_2 = 1000\)

\[MD(R_2) = MD_2 + 3MD_1 + \text{CRPD}\]

<table>
<thead>
<tr>
<th>Cache sets</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Motivational Example

- Taskset \{T_1, T_2\}
 - \(C_1 = 100\) and \(T_1 = 200\)
 - \(C_2 = 400\) and \(T_2 = 1000\)

\[
\begin{align*}
\text{MD}(R_2) &= \text{MD}_2 + 3\text{MD}_1 + \text{CRPD} \\
\end{align*}
\]
Motivational Example

- Taskset \(\{T_1, T_2\}\)
 - \(C_1 = 100\) and \(T_1 = 200\)
 - \(C_2 = 400\) and \(T_2 = 1000\)

\[
\begin{align*}
\text{MD}(R_2) &= \text{MD}_2 + 3\text{MD}_1 + \text{CRPD}
\end{align*}
\]
Motivational Example

- Taskset \(\{T_1, T_2\} \)
 \(C_1 = 100 \) and \(T_1 = 200 \)
 \(C_2 = 400 \) and \(T_2 = 1000 \)

\[
\text{MD}(R_2) = \text{MD}_2 + 3\text{MD}_1 + \text{CRPD}
\]
Motivational Example

- Taskset \{T_1, T_2\}
 \[C_1 = 100 \text{ and } T_1 = 200\]
 \[C_2 = 400 \text{ and } T_2 = 1000\]

\[
\begin{align*}
\text{MD}(R_2) &= \text{MD}_2 + 3\text{MD}_1 + \text{CRPD} \\
\text{MD}(R_2) &= \text{MD}_2 + \text{MD}_1 + 2(\text{MD}_1 - |\text{PCB}|) + \text{CRPD}
\end{align*}
\]
Contributions
Contributions

• Improved WCRT analysis for fixed priority preemptive systems

\[R_i(t) = P_i + MD_i + \sum_{\forall j \in hp(i)} P_j + MD_j + \sum_{\forall j \in hp(i)} CRPD_{i,j} \]

\[+ \sum_{\forall j \in hp(i)} \left[\frac{R_i}{T_j} - 1 \right] \times (P_j + MD^r_{j} + CPRO_{j,i}) \]
Contributions

- Improved WCRT analysis for fixed priority preemptive systems

\[R_i(t) = P_i + MD_i + \sum_{\forall j \in hp(i)} P_j + MD_j + \sum_{\forall j \in hp(i)} CRPD_{i,j} + \sum_{\forall j \in hp(i)} \left[\frac{R_i}{T_j} - 1 \right] \times (P_j + MD_{r,j} + CPRO_{j,i}) \]

Considering the effect of PCBs
Contributions

• Improved WCRT analysis for fixed priority preemptive systems

\[R_i(t) = P_i + MD_i + \sum_{\forall j \in hp(i)} P_j + MD_j + \sum_{\forall j \in hp(i)} CRPD_{i,j} \]

\[\sum_{\forall j \in hp(i)} \left[\frac{R_i}{T_j} - 1 \right] * (P_j + MD^r_j + CPRO_{j,i}) \]

Considering the effect of PCBs

Considering evictions of PCBs
Contributions

• Improved WCRT analysis for fixed priority preemptive systems

\[R_i(t) = P_i + MD_i + \sum_{\forall j \in hp(i)} P_j + MD_j + \sum_{\forall j \in hp(i)} CRPD_{i,j} \]

\[+ \sum_{\forall j \in hp(i)} \left[\frac{R_i}{T_j} - 1 \right] \times (P_j + MD^r_j + \text{CPR}O_{j,i}) \]

Considering the effect of CRPD

Considering evictions of PCBs

Considering the effect of PCBs
Preliminary Results

- Proposed WCRT analysis
- State-of-the-art WCRT analysis
Future Work

• Extend the analysis to set associative and data caches.
• Provide a less pessimistic multi-set approach to calculate the impact of PCBs.
• Combine approaches to calculate both CRPD and impact of PCBs.
• Extensive experimental evaluation using available benchmarks.
Thank You

Questions