UNIVERSITY of **HOUSTON**

COLLEGE of NATURAL SCIENCES & MATHEMATICS

PRELIMINARY PERFORMANCE EVALUATION OF HEF SCHEDULING ALGORITHM

Carlos A. Rincón C. and Albert M. K. Cheng University of Houston Real-time Systems Lab <u>carincon@uh.edu</u> and <u>cheng@cs.uh.edu</u>

OUTLINE

- Motivation
- Related work
- Methods and Results
- Conclusion and future work

MOTIVATION

The purpose of the research is to measure the performance of the highest entropy first scheduling algorithm in order to have a guideline about the behavior of the studied algorithm under certain conditions.

The contributions of this paper are:

- Generate multiple task sets by implementing the programs from the SNU real-time benchmark [1] in Wind River Work-bench 3.3 [2] to calculate the WCET. Also, derive the periods by using a linear programming solution aiming to maximize the utilization of the system based on a predefined hyper-period.
- Measure the performance of the HEF algorithm to schedule real-time tasks using as metrics the number of context switches and deadline-miss ratio.

RELATED WORK

ENTROPY AND REAL-TIME SYSTEMS

Rincon and Cheng [3] proposed the mathematical background for using entropy as a parameter to schedule real-time tasks:

Total Entropy of a Task: $H_{Task} = \frac{hperiod}{T_i} * C_i * H_{SU} = log_2(hperiod) * \frac{C_i}{T_i} bits$ (H_{su}=Entropy of a single unit of time of the scheduling diagram).

Total Normalized Entropy of a Task: $NH_{Task} = \frac{H_{Task}}{C_i} bits$ Total Entropy of the System: $H_{Sys} = \sum_{i=1}^m H_{Task_i} = log_2(hperiod) * \sum_{i=1}^m \frac{C_i}{T_i} bits$

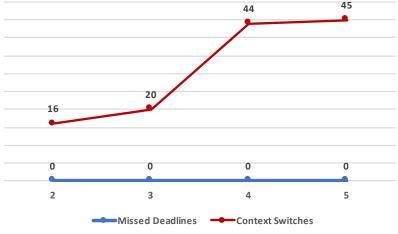
Relationship between HSys and Utilization: we know that the maximum value of entropy is equal to log2(number of possible cases = hperiod), then HSys $\leq \log 2(\text{hperiod})$. Based on this inequality we have:

$$log_2(hperiod) * \sum_{i=1}^{m} \frac{C_i}{T_i} \le log_2(hperiod)$$
. Then $U = \sum_{i=1}^{m} C_i/T_i \le 1$

RELATED WORK

HIGHEST ENTROPY FIRST ALGORITHM

- 1. Determine the schedulability of the given task set using the proposed relationship.
- 2. Calculate *NHTask* and *HTask* for each task.
- 3. Select the task to be executed using the following criteria:
 - a. Select the task with the highest *NHTask*.
 - b. If two or more tasks have the highest *NHTask*, then select the task with the highest *HTask*.
 - c. If two or more tasks have the highest *HTask* and one of these tasks is the one running, then select the task that is running (to minimize preemption), else select the task based on its process identifier (PID).
- 4. Update the values of T_i and C_i for all tasks.
- 5. Go to step 2 until time = hperiod.


METHODS AND RESULTS

Task set Generation

	TABLE I: Selected	programs	from	the SNU	real-time	benchmark
--	-------------------	----------	------	---------	-----------	-----------

Task Number	SNU Program	Description			
1	sqrt.c	Square root,function implemented by Taylor series			
2	fibcall.c	Summing the Fibonacci series			
3	crc.c	A demonstration for CRC (Cyclic Redundancy Check) operation			
4	minver.c	Matrix inversion for 3x3 floating point matrix			
5	select.c	A function to select the Nth largest number in the floating point array size 20			

Preliminary Results

TABLE II: WCET for the selected tasks

Task Number	WCET	ROUND WCET
1	13.34 ms	14 ms
2	7.32 ms	8 ms
3	13.54 ms	14 ms
4	16.41 ms	17 ms
5	25.73 ms	26 ms

TABLE III: Task sets 1 and 2

Task Number	C_i	T_i	Task Number	C_i	T_i
1	14 ms	50 ms	1	14 ms	100 ms
2	8 ms	12 ms	2	8 ms	50 ms
			3	14 ms	20 ms

TABLE IV: Task sets 3 and 4

Task Number	C_i	T_i	Task Number	C_i	T_i
1	14 ms	100 ms	1	14 ms	100 ms
2	8 ms	34 ms	2	8 ms	100 ms
3	14 ms	50 ms	3	14 ms	100 ms
4	17 ms	50 ms	4	17 ms	50 ms
			5	26 ms	100 ms

CONCLUSIONS AND FUTURE WORK

- We proposed a methodology to generate task sets using the programs from the SNU real-time benchmark (using Wind River Workbench to calculate the WCET of the tasks and a linear programming solution to set the periods).
- The results showed:
 - 1. The number of context switches is directly proportional to the number of tasks in the task set.
 - 2. For the deadline-miss ratio, further analysis must be made to confirm that it depends on the utilization of the system ($U \le 1 = no$ deadline misses).
- We propose as future work to compare the performance of HEF against Earliest Deadline First (EDF) [4].

REFERENCES

[1] "Snu real-time benchmark suite," http://archi.snu.ac.kr/realtime/benchmark.[2] WindRiver, "Wind river workbench," http://www.windriver.com.

- [3] C. A. Rincon and A. M. Cheng, "Using entropy as a parameter to schedule real-time tasks," in Real-Time Systems Symposium. WiP Session, 2015 IEEE, Dec 2015, pp. 375–375.
- [4] C. Liu and J. Layland, "Scheduling algorithms for multiprogramming in a hard-real-time environment," J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

QUESTIONS ?

Albert M. K. Cheng University of Houston – Universidad del Zulia cheng@cs.uh.edu