
Timing Aware Hardware Virtualization on the L4Re
Microkernel System

Adam Lackorzynski†,‡, Alexander Warg†

Kernkonzept GmbH† Technische Universität Dresden‡

Dresden, Germany Operating-Systems Group
Dresden, Germany

Email: adam.lackorzynski@kernkonzept.com, adam.lackorzynski@tu-dresden.de
alexander.warg@kernkonzept.com

Abstract—Hardware virtualization support has found its way
into real-time and embedded systems. It is paramount for an
efficient concurrent execution of multiple systems on a single
platform, including commodity operating-systems and their ap-
plications. Isolation is a key feature for these systems, both
in the spatial and temporal domain, as it allows for secure
combinations of real-time and non real-time applications. For
such requirements, microkernels are a perfect fit as they provide
the foundation for building secure as well as real-time aware sys-
tems. Lately, microkernels learned to support hardware-provided
virtualization features, morphing them into microhypervisors. In
our demo, we show our open-source and commercially supported
L4Re system running Linux and FreeRTOS side by side on a
multi-core ARM platform. While for Linux we use the hardware
features for virtualization, i.e., ARM’s virtualized extension, we
revert to paravirtualization for running the FreeRTOS guest.
Paravirtualization adapts the guest kernel to run as a native
application on the microkernel. For simple guests that do not
use advanced hardware features such as virtual memory and
multiple privilege levels, virtualization is simplified and the state
of a virtual machine is significantly reduced, improving interrupt
delivery and context switching latency. Both guests as well as the
native application drive LEDs to exemplify steering actual devices
as well as to show their liveliness. Taking down the Linux guest
will not disturb the others.

I. INTRODUCTION

Virtualization technology enables many interesting appli-
cation scenarios, which require combining commodity off-the-
shelf applications and real-time tasks in a secure, dependable
and, most importantly, timing preserving manner. For example,
cyber-physical systems such as autonomous cars, UAVs for
wood-fire detection and SCADA systems, which besides many
applications control our power grid, combine latency sensitive
tasks such as model predictive control tasks for engines and
road situations, flight stabilization and grid stability with
maintenance tasks or other, less timing critical tasks that
benefit greatly from the extended execution environments of
commodity operating-systems (OSs).

Consider, for example, an autonomous driving scenario. As
long as a safe exit to the emergency lane can be maintained
at all points in time and in all situations and as long as this
exit route can be executed entirely in the real-time subsystem,
resource intensive tasks such as vision, scenery analysis and
maneuver planning can remain in rich commodity environ-
ments, which speed up development time and reduce costs
but sacrifice stringent timing guarantees. The aforementioned

assumptions allow the real-time system to transition into a fail-
safe mode for those situations where the commodity operating
system ceases to respond in a timely manner.

However, for real-time tasks to operate reliably next to
commodity OSs and their applications, faults in the latter must
be confined and timing guarantees of the former preserved.

NXP TWR-LS1021A

L4Re RT Microkernel & Hypervisor

Virtual Machine
Linux

Virtual Machine
FreeRTOS

L4Re
Management

Console
Mux

Fig. 1. Demo Setup, virtualized Linux and FreeRTOS running on an ARM
platform.1

In this demo, we show how our open-source and commer-
cially supported L4Re microkernel system [1], [2] exploits
ARMv7’s hardware virtualization capabilities to consolidate
Linux and FreeRTOS on a multi-processor platform. The
commodity OS Linux and the real-time kernel FreeRTOS
are run independently of each other in two virtual machines
(VMs), which prevents any malfunctioning of one to affect the
other. While for Linux we use ARM’s hardware virtualization
capabilities, the FreeRTOS guest is paravirtualized.

II. THE L4RE MICROKERNEL SYSTEM

L4Re is a capability-based third-generation microkernel-
based system [1]. It evolved starting from the DROPS real-time
system [3], later including secure system construction [4] and
a major interface redesign towards a capability-driven security
model [2] while keeping its real-time roots. With L4Re one can
now securely isolate real-time and non real-time applications
in a single system.

1Tux logo copyright by Larry Ewing, Simon Budig, Anja Gerwinski;
FreeRTOS logo from http://www.freertos.org/

1



The system consists of the L4Re kernel and the L4Re user-
level infrastructure that provides the necessary framework to
build a wide range of applications, including services. Through
its capability design and thus the inherent local naming
scheme, interposing interfaces has become an essential part
of the system, which allows easily exchanging and enhancing
of the functionality of the system. For example, by interposing
part of the scheduling interface, new core placement policies
can be added and efficiently executed.

III. HARDWARE VS. SOFTWARE VIRTUALIZATION

Classical real-time operating systems, such as FreeRTOS,
run on systems that do not provide hardware features for
isolation, such as virtual memory and multiple privilege levels.
Thus, the virtualization requirements for such guests are much
simpler, allowing them to be virtualized as a native user-level
process of the microkernel. In comparison to a hardware-
virtualized virtual machine, the state of such a task, which
is to be maintained and stored by the kernel during a context
switch, is much smaller. Therefore, unless additional hardware
is added to simultaneously maintain multiple virtual machines,
paravirtualization reduces interrupt latency by requiring the
kernel to capture only the user-level state of paravirtualized
guests.

To further reduce this latency while allowing for fine
grained control and scheduling of VM interrupts, we imple-
mented the scheduling context scheme proposed in [5]. In this
scheme, multiple scheduling contexts (an abstraction of time)
can be attached to threads and VMs be activated upon arrival
of an interrupt. Upon such an arrival, the host kernel sched-
uler compares the interrupt’s and current scheduling context’s
priority to determine whether it can inject this interrupt and
schedule the VM immediately or whether a higher prioritized
task is present.

For commodity operating systems (such as Linux), virtual-
ization is more involved. These systems use multiple privilege
levels and virtual memory, which evades a naive virtualization
using a user-level task. Although, source availability provided,
it is possible to para-virtualize these systems [6], [7], hardware
features for virtualization offer a major benefit as they provide
additional privilege levels and virtual memory capabilities [8],
[9]. However, these additional hardware features come at the
cost of a larger state to be context switched, which translates
to higher latencies and response times.

IV. BEYOND VIRTUALIZING GUEST OSS

While virtualization is a crucial feature to isolate sub-
systems, virtualization by itself is not of much use. Instead,
tasks, which implement a functionality while running inside
the VMs, must also be able to interact with the outside
world through sensors, actuators and other devices. Of course,
guarantees about the timeliness of such device accesses must
be preserved by the virtualization layer, in particular if part of
the system becomes compromised.

To exemplify this requirement in our demo, the virtualized
guest OSs (Linux and FreeRTOS) each steer an LED as
an example of a more complex device and to report their
health status. In addition, a native task of the host system

performs the same operation to resemble scenarios where real-
time functionality is implemented as native L4Re applications.
Figure 1 shows this setup.

In the demo, the Linux guest can be commanded interac-
tively and none of the activities within the Linux, including
crashing the whole VM, shall affect the execution of the
FreeRTOS guest or of the native application. The LEDs of
the application and FreeRTOS task display the situation ac-
cordingly by showing no difference in their blinking behavior
while the LED driven by Linux will eventually stop blinking.
It remains in the state, which corresponds to the last setting
made by Linux.

This elementary demo setup shall illustrate what is possible
on modern microkernel-based systems today and inspire more
sophisticated usage scenarios. We invite everyone interested to
try out the open-source L4Re system, available at [1].

REFERENCES

[1] “L4Re microkernel system,” https://l4re.org/.
[2] A. Lackorzynski and A. Warg, “Taming Subsystems: Capabilities as

Universal Resource Access Control in L4,” in IIES ’09: Proceedings of
the Second Workshop on Isolation and Integration in Embedded Systems.
Nuremberg, Germany: ACM, 2009, pp. 25–30.

[3] H. Härtig, R. Baumgartl, M. Borriss, C.-J. Hamann, M. Hohmuth,
F. Mehnert, L. Reuther, S. Schönberg, and J. Wolter, “DROPS: OS
support for distributed multimedia applications,” in Proceedings of the
Eighth ACM SIGOPS European Workshop, Sintra, Portugal, Sep. 1998.

[4] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski,
F. Mehnert, and M. Peter, “The Nizza Secure-System Architecture,” in
In IEEE CollaborateCom 2005. IEEE Press, 2005.

[5] A. Lackorzynski, M. Völp, and A. Warg, “Flat but trustworthy:
Security aspects in flattened hierarchical scheduling,” SIGBED Rev.,
vol. 11, no. 2, pp. 8–12, Sep. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2668138.2668139

[6] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter, “The
performance of µ-kernel-based systems,” in Proceedings of the 16th ACM
Symposium on Operating System Principles (SOSP), Saint-Malo, France,
Oct. 1997, pp. 66–77.

[7] “L4Linux,” https://l4linux.org/.
[8] ARM Limited, ARM Architecture Reference Manual, ARMv7-A and

ARMv7-R edition, ARM DDI 0406C.c ed., 2014.
[9] Intel Corporation, Intel R© 64 and IA-32 Architectures Software Devel-

oper’s Manual Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B, 3C and 3D,
325462-057US, December 2015 ed., 12 2015.

2


