Modeling multi-periodic Simulink systems by Synchronous Dataflow Graphs

Enagnon C. Klikpo (IRT SystemX)
Jad Kathib (CEA)
Alix Munier-Kordon (UPMC)
Advanced embedded technologies in modern cars
- Standards (emission, safety),
- ADAS, connected or autonomous car

Need of computing power

AUTomotive Open System Architecture:
- Standard for the design and development of automotive E/E architecture
- AUTOSAR 4.x introduced multicore platforms

Multicore for critical automotive application raises some issues
- The mastery of the dataflow (and timing) among functionalities over cores
- Missing a dataflow can lead to fatal scenario: e.g. crash detection and inflator (ACU)
- Simulink models
 - Synchronous sequential execution
 - Dataflow communication patterns

- Need of predictability

- Understand and model the communication
 - Synchronous dataflow graph (SDFG)
Plan

Modeling multi-periodic Simulink systems by Synchronous Dataflow Graphs

- Reminder on SDFG
- Description of communication in Simulink
- Identification of Simulink communication patterns
- Correspondence between Simulink and SDFG
- Example of a Fuel Cell Control System
- Conclusion
SDFG: Directed graph

- Lee et Messerschmidt
- Modeling communications in data flow applications

Static description: Each process has the same behavior during execution
- Low expressivity
- Completely predictive
Matlab/Simulink: specification and simulation tool used in Industry

A Simulink system is a set of communicating blocks

Blocks are executed at their sample time (their period)
Block execution consists in:
- Input update and outputs computation (depend on the state and/or the inputs)
- Updating the block state

Several communication mechanisms in Simulink:
- The order in which blocks are executed
- The input data that each execution of a block uses

We have extracted three main communication patterns
- « Direct » communication
- « Delayed » communication
- « Hybrid » communication
SDFG model of Simulink multi-periodic systems

Hybrid communication

\[\omega_a > M_0 + \omega_a \cdot k_a - \omega_b \cdot k_b \geq \max(\omega_b - \omega_a, 0) \]

\[M_0(\text{hybrid}) = \omega_b \]
Fuel Cell Control System
Formal equivalence between Simulink and SDFG
- SDFG results for Simulink systems implementation

SDFG is widely used:
- Initially design to for dataflow application (signal processing)
- Compilation on multi-core (with several variants: CSDF, HSDF) Special case of petri nets (basic)
- It has proven effective for modeling application flow

SDFG has existing results on
- Scheduling and mapping
- Resources optimization
Conclusion and perspectives

- SDFG rather than Simulink models
- Preemptive Real-time implementation
 - Use of mathematical tools of SDF
- Other approaches and constraints
 - Language bases approaches
 - PRELUDE
- We are constrained by Simulink

Requirements:
- Hardware
- Safety

SDFG

AUTOSAR configurations

Arxml, source codes, …
Modeling multi-periodic Simulink systems by Synchronous Dataflow Graphs

Enagnon C. Klikpo
Modeling principle (equivalence)
- precedence constraints
- data dependencies

The obtained data dependencies equation
- \(\omega_i > M_0 + \omega_i \cdot n_i - \omega_j \cdot n_j \geq \max(\omega_j - \omega_i, 0) \)
- \(\omega \): periods
- \(M_0(\text{direct}) = \omega_j - \gcd(\omega_i, \omega_j) \)
- \(M_0(\text{delayed}) = \omega_j + \omega_i - \gcd(\omega_i, \omega_j) \)
- \(M_0(\text{hybrid}) = \omega_j \)
- \(\gcd \): greatest common divisor

\[z_i > M_0(a) + n_i \cdot z_i - n_j \cdot z_j \geq \max(z_i - z_j, 0) \]
Annex

Simulink communication mechanisms

- **Direct communication**

- **Delayed communication**

- **Hybrid communication**