

Modeling multi-periodic Simulink systems by Synchronous Dataflow Graphs

Enagnon C. Klikpo (IRT SystemX)

Jad Kathib (CEA)

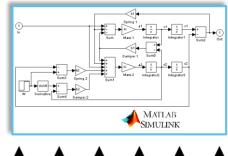
Alix Munier-Kordon (UPMC)

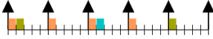
æ

Need of computing power and multicore issues

- Advanced embedded technologies in modern cars
 - Standards (emission, safety),
 - ADAS, connected or autonomous car
- Need of computing power
- AUTomotive Open System Architecture : **AUT@SAR**
 - Standard for the design and development of automotive E/E architecture
 - AUTOSAR 4.x introduced multicore platforms

Multicore for critical automotive application raises some issues


- The mastery of the dataflow (and timing) among functionalities over cores
- Missing a dataflow can lead to fatal scenario: e.g crash detection and inflator (ACU)



Mastering of the dataflow

Need of a dataflow formalism

Simulink models

- Synchronous sequential execution
- dataflow communication patterns

Need of predictability

Understand and model the communication

• Synchronous dataflow graph (SDFG)

- Reminder on SDFG
- Description of communication in Simulink
- Identification of Simulink communication patterns
- Correspondence between Simulink and SDFG
- Example of a Fuel Cell Control System
- Conclusion

Plan

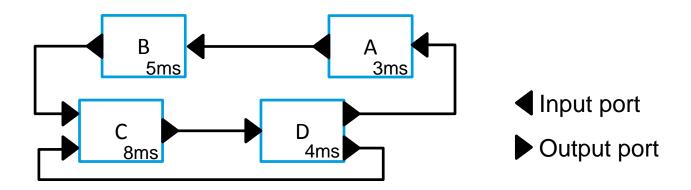
The SDFG formalism

Overview

SDFG: Directed graph

- Lee et Messerschmidtt
- Modeling communications in data flow applications

$$A \xrightarrow{\text{in}_a=3} \xrightarrow{\text{M}_0(a)=4} \xrightarrow{\text{out}_a=5} B$$


• **Static description:** Each process has the same behavior during execution

- Low expressivity
- Completely predictive

- A Simulink system is a set of communicating blocks
- Blocks are executed at they sample time (their period)

Simulink

Simulink

Communication patterns

• Block execution consists in:

- Input update and outputs computation (depend on the state and/or the inputs)
- Updating the block state

Several communication mechanisms in Simulink:

- The order in which blocks are executed
- The input data that each execution of a block uses

We have extracted three main communication patterns

- « Direct » communication
- « Delayed » communication
- « Hybrid » communication

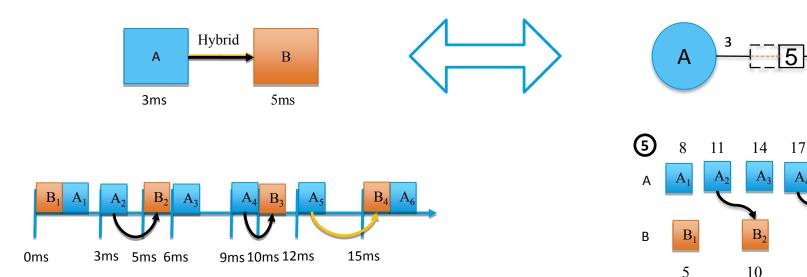
System×

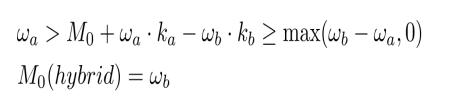
SDFG model of Simulink multi-periodic systems

Hybrid communication

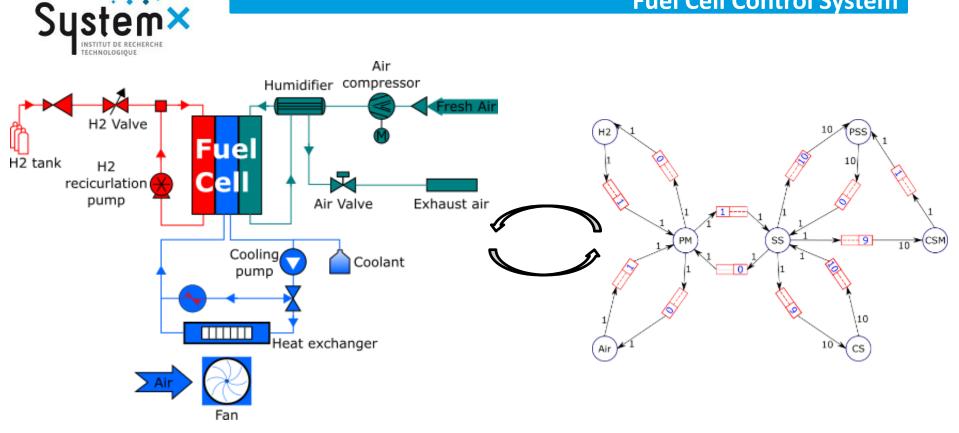
В

23


B₄


20

20


 B_3

15

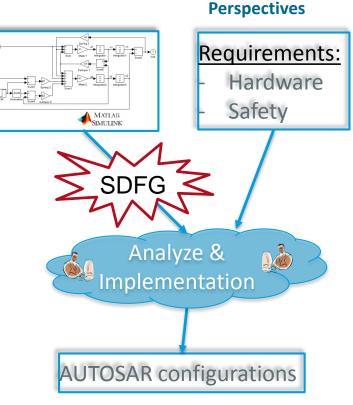
Fuel Cell Control System

Formal equivalence between Simulink and SDFG

• SDFG results for Simulink systems implementation

• SDFG is widely used:

- Initially design to for dataflow application (signal processing)
- Compilation on multi-core (with several variants: CSDF, HSDF) Special case of petri nets (basic)
- It has proven effective for modeling application flow


SDFG has existing results on

- Scheduling and mapping
- Resources optimization

Conclusion and perspectives

- SDFG rather than Simulink models
- Preemptive Real-time implementation
 - Use of mathematical tools of SDF
- Other approaches and constraints
 - Language bases approaches
 - PRELUDE
- We are constrained by Simulink

Modeling multi-periodic Simulink systems by Synchronous Dataflow Graphs

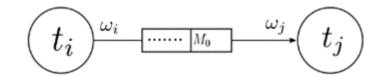
Enagnon C. Klikpo

æ

 \mathbf{G}

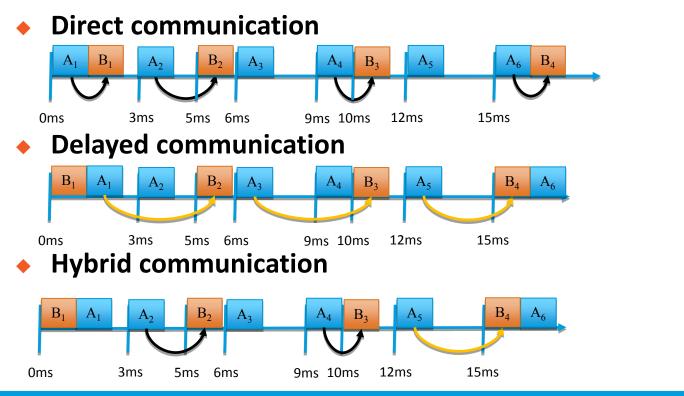
Transformation principle

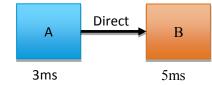
Modeling principle (equivalence)

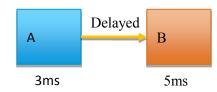

precedence constraints

 $z_i > M_0(a) + n_i \cdot z_i - n_j \cdot z_j \ge \max(z_i - z_j, 0)$

data dependencies


The obtained data dependencies equation


- $\omega_i > M_0 + \omega_i \cdot n_i \omega_j \cdot n_j \ge \max(\omega_j \omega_i, 0)$
- ω : periods
- $M_0(direct) = \omega_j gcd(\omega_i, \omega_j)$
- $M_0(delayed) = \omega_j + \omega_i gcd(\omega_i, \omega_j)$
- $M_0(hybrid) = \omega_j$
- *gcd* : greatest common divisor



Annex

Simulink communication mechanisms

A Hybrid B 3ms 5ms