Modeling and Verification of Dynamic Command Scheduling for Real-Time Memory Controllers

Yonghui Li¹, Benny Akesson², Kai Lampka³, and Kees Goossens¹

¹Eindhoven University of Technology, the Netherlands,
²CISTER/INESC TEC, ISEP, Portugal,
³Uppsala University, Sweden
yonghui.li@tue.nl
Introduction: Heterogeneous Real-Time System

- Multi-processor systems support hard and soft real-time applications

Diverse memory traffic: size, type, address

Worst-case response time (WCRT)?

Worst-case bandwidth (WCBW)?
Outline

- Background
 - DRAM
 - Dynamically scheduled memory controller
 - Timed automata

- TA modeling of a RT memory controller
 - TA model
 - Property verification

- Experimental results

- Conclusions
DRAM Memories

- DRAM is accessed by scheduling commands
 - ACT, PRE, RD, WR, REF, NOP
 - Subject to timing constraints
 - Bank interleaving
 - Burst count
A transaction is translated into a sequence of commands

- Scheduling algorithm
 - First-Come First-Serve (FCFS) for transactions
 - RD or WR commands have higher priority than ACT
A transaction $T_i (i > 0)$ is executed by scheduling commands to successive banks.
Related Work

- Worst-case analyses of real-time memory controllers are based on analyzing individual timing constraint
 - Applying conservative assumptions -> pessimistic bounds
 - Complex analysis -> time-consuming to derive bounds

- Dataflow modeling of real-time memory controllers [Y. Li, 2015]
 - Dependencies are captured by a dataflow graph
 - Analyzing the dataflow model -> bounds
 - Applying assumptions for unpredictable behavior -> pessimism
 - Providing only worst-case bandwidth bound
Our Proposal

- Model and analysis of real-time memory controllers
 - Modeling with timed automata (TA)
 - Without any assumption
 - Accurate timing analysis
 - TA analysis via model checking with Uppaal

\[
\begin{align*}
\text{Queries} & \quad A[] \text{ not deadlock} \\
& \quad A[] \text{ WCRT} \leq 40
\end{align*}
\]
Timed Automata (TA) Model

- TA essentially model a timed system based on non-deterministic state machines extended with clocks and variables

- An example
 - Timing constraint counter

- In system declaration, the TA template is instantiated to be multiple instances
Outline

- Background
 - DRAM
 - Dynamically scheduled memory controller
 - Timed automata (TA) model
- TA modeling of a RT memory controller
- Experimental results
- Conclusions
Overview of the TA model using different templates

Transaction \[\rightarrow\] Command scheduling: ACT, RD/WR, PRE \[\rightarrow\] Command bus

- Source
 - Trans
 - TDM
 - Bus
 - TDMArb
 - Memory mapping
 - TCC: RW
 - ValidSW
 - TCC: CCD
 - TCC: RCD
- ACT Scheduler
 - ACTBus
 - ValidRAS
 - ValidRP
 - TCC: RAS
 - ValidFAW
 - ACTCmd
- Auto-PRE
 - ValidCCD
 - RWCmd
 - ValidRCD
 - ACTCmd
- RW Scheduler
 - RWCmd
 - RWCmd
 - TCC: FAW
 - ValidRRD
 - TCC: RRD
- Cmd Bus

NRTrans > 0

Technische Universiteit Eindhoven
University of Technology
TA Modeling of a RT Memory Controller

- Intuitive TA Model

Source

Intuitive TA Model

NextTrans?

Trans!

Src

TransType := READ

Trans!

TransType := WRITE

Sink

TDM Bus

Source

Requestor = = 0

TransSize := 256

Requestor = = 1

TransSize := 128

Requestor = = 2

TransSize := 64

Requestor = = 3

TransSize := 32

Requestor = = 4

TransSize := 16

TDM!

End

Memory mapping

Info.BS := BS, Info.BI := BI, Info.BC := BC,
Info.type := TransType, PARQueue[id] := Info,
id := (id+ 1)% MAXNrTrans, NrTrans +

AddrMap!

TDMArb?

Trans?

TDM!

NextTrans?

Trans!

TDM!

Src

TransType := READ

Trans!

TransType := WRITE

TDM!

Requestor := (Requestor+ 1)%MaxReqNr

Id

Bus

Memory

mapping

Requestor := (Requestor+ 1)%MaxReqNr

Requestor := 0

TransSize := 256

Requestor := 1

TransSize := 128

Requestor := 2

TransSize := 64

Requestor := 3

TransSize := 32

Requestor := 4

TransSize := 16

TDMIdle

Trans?

TDM!

Trans?

TDM!
TA Modeling of a RT Memory Controller

- Intuitive TA Model

Table 1. Characteristics of the intuitive TA.

TA instances	45
clocks	40
variables	41
locations	186
synchronizations	46
edges	226
Optimized TA Model

- Multiple timing constraints are captured by a single TA instead of separate TAs.
- We reuse counters for different timing constraints.

Table 2. Characteristics of the TA models.

<table>
<thead>
<tr>
<th></th>
<th>Intuitive</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA instances</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>clocks</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>variables</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>locations</td>
<td>186</td>
<td>137</td>
</tr>
<tr>
<td>synchronizations</td>
<td>46</td>
<td>39</td>
</tr>
<tr>
<td>edges</td>
<td>226</td>
<td>186</td>
</tr>
</tbody>
</table>
TA Observers track the time of
- executing a number of transactions -> WCRT Bound
 - Response time is determined by the interfering transactions
- transferring a fixed mount of data -> WCBW Bound
 - The bound on bandwidth replies on the transferred data

\[
\text{A[]} \text{observer.WCRT} \leq \text{Estimate_Bound}
\]
Experimental Results

- Setup
 - JEDEC-compliant DDR3-1600G SDRAM memory with interface width of 16 bits and a capacity of 2 Gb
 - Uppaal v4.1.19 on a 64-bit CentOS 6.6 system with 24 Intel Xeon(R) CPUs running at 2.10 GHz and with 125 GB RAM
 - Transaction sizes: 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes.
Experiment 1: Validation of TA Model

- **Uppaal simulation of the proposed TA model**
 - Input: a sequence of transactions
 - Output: scheduling timings of commands

- **Transaction execution with an open-source cycle-accurate tool RTMemController** [Li et al., ECRTS 2014]
 - http://www.es.ele.tue.nl/rtmemcontroller/

- **Identical scheduling timings of commands are obtained**
 - TA model accurately captures the timing behavior of the memory controller
Experiment 2: Fixed Transaction Size

- **Worst-case response time (WCRT) bound**
 - TA is always equal or better than existing analyses
 - Improvements: max 20% and average 7.7%.
 - Each bound is validated by `RTMemController`
 - \leq 20 minutes, and \leq 7 GB RAM

![Bar chart showing WCRT (cycles) vs. Transaction sizes (bytes) for RD and WR for different transaction sizes: 16 bytes, 32 bytes, 64 bytes, 128 bytes, and 256 bytes. The chart compares analytical, scheduled, and TA methods.](chart.png)
Experiment 2: Fixed Transaction Size

- Worst-case bandwidth (WCBW) bound
 - Improvements: max 25% and average 13.6%
 - ≤ 1.8 hours and ≤ 15.3 GB RAM
Experiment 3: Variable Transaction Sizes

- **Worst-case bandwidth (WCBW) bound**
 - With static information, i.e., TDM arbitration, 40% higher WCBW bound
 - \(\leq 6.8 \) hours and \(\leq 30.3 \) GB RAM
Conclusions

- A **timed automata (TA) model** of a real-time memory controller with dynamic command scheduling
 - Public at: http://www.es.ele.tue.nl/rtmemcontroller/TA.zip
 - It can be easily **extended** to different memory controllers and SDRAM devices.
- The TA model is **validated** by *RTMemController*
 - The TA model **accurately** captures the timing behavior of the memory controller.
- The TA model achieves better bounds than existing analyses
 - If **static information**, e.g., the TDM arbitration, is given, the verification runs faster and much **better bound** can be obtained.
Thank You.

yonghui.li@tue.nl