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Motivation 

System integrators increasingly incorporate               

software (SW) from different SW Providers (SP) 
 

In Early-Design Phases (EDP) each SP                                  

is provided  

– A set of functions to implement  

– A time budget 

– A virtual machine (e.g GMV’s HAIR) of the                                       

target platform  

 

Virtual Machines (VM)s 

– Allow functional testing 

– Allow suppliers develop SW functions in isol. 

– Fail to provide timing estimates of the          

executed applications 
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Problem 

Early Design Phases 

– Uncertainties: preliminary implementations 

– Timing requirements are bounded with early estimates  

• Overestimation    removes the uncertainties, over-provisioned system 

• Underestimation   costly changes in late design phases (LDP) 

 

Multicores 

– Tasks execution time:  

– Δt depends on co-runner tasks  

• SP cannot derive etmuc without sharing their apps. 

– Scheduling depends on etmuc and vice-versa 

• How to assign and enforce timing budgets?  

• Problem for the system integrators 
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Proposal 

VM do not provide timing estimates of applications 

– Full-fledge timing simulator attached to the VM is too slow (100-1000x) 

 

We propose an approach for EDP that 

– Provides fast and accurate timing estimates of tasks’ execution time 

when the target (virtual) hardware comprises multicore 

– Extends virtualized environments with a light-weight timing model that  

• i) provides high accuracy and low overhead 

• ii) does not require code or binaries to be shared among SW provider 

(keeping the confidentiality on their developed software) 

 

Overall: our proposal simplifies and speeds up the process of 

getting timing estimates during the EDP 
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Builds upon the concept of an execution profile (EP) 

– Derived in isolation for each task 

– Encapsulates for each task information                            

about its resource usage 

 

 

Principle 
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Steps 

1) Generating the EP for each task and then 

 

2) Contention modelling (Δt generation): must be fast! 

 

3) Check scheduling plan and if required update it (4) 
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Example: dual core and cyclic executive 

Cyclic executive scheduling (widely used in industry)  

– Major cycles (mac) and minor cycles (mic) 

Scheduling plan provided by the OEM  

– Suppliers can determine co-runners of their application in mic 

In mic1 A and B interact with C  

– Derive ΔtA
1, ΔtB

1, ΔtC
1, 

– If both etC
muc  and (etA

muc + etB
muc) fit in a mic no change to the 

schedule (for this first mic) is required 
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Contention modelling /1 

Simulators  

– Keep the state of the modelled HW in SW data structures 

– On an access, data structures are searched and their internal state is 

appropriately updated 

– Time-consuming process 

Our approach 

– Keep no information about the execution history 

– Model each instruction in isolation 

– We use in the EPs to predict contention impact 

• Build a representative scenario so that the timing behaviour of the 

instruction approximates that of the real execution 

• EPs comprise distributions  histograms 
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Contention modelling /2 

Single entry cache. 2 accessing tasks (each accesses 1 line) 

– Consecutive accesses from the same task  hit (1 cycle) and vice 

versa (miss 10 cycles) 

 

Example case: 100 accesses 
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Contention modelling /2 

Histogram: sequence of pairs <value, probability> 

Realization (     ):   

– Process to get a sample from the histogram 

– Example 

• <1, 0.1><2, 0.4><3.0.5> 

• Generate a random number r from (0 to 1] 

– 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =  

1 𝑖𝑓 (0.0 <  𝑟 ≤ 0.1)
2 𝑖𝑓 (0.1 <  𝑟 ≤ 0.5)
3 𝑖𝑓 (0.5 <  𝑟 ≤ 1.0)

 

Each EP comprises several histograms 
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Histograms: 
– Time between accesses going to the same set in uL2 

– Memory Stack Distance: # of unique addresses to the same set between 
two accesses to the same line. 

– Cache Set Distance: # of accesses to different sets between two accesses 
to the same set. 

Other relevant Data: 
• Hit rates of caches 

• Number of instructions 

• Instruction Mix 

• Etc… 

Execution Profile 
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Execution time = (pipeline) frontend + (pipeline) backend lats. 

 

Execution time in isolation 
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Backend latencies: Jittery units  worst-case 
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Jittery back-end operations 

– In general caused by the particular values operated 

For operations with jittery back end latency we assume the 

worst case latency 

 



Execution time = (pipeline) frontend + (pipeline) backend lats. 

 

Execution time in isolation 
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Cache Contention modelling /1 

Setup  

– Private DL1 and IL1. Shared UL2 

– LRU replacement and non inclusive caches 

Appreciation 

– DL1 & IL1 hits; and UL2 misses in isol.  not affected by contention 

– UL2 hits in isolation  can become misses. For an access, with LRU:  

• If its stack distance is smaller to W (number of ways)  hit 

• If it is greater or equal than W  miss 

Goal 

– Derive stack distance in isolation for every access of 𝜏𝑗 

– Derive delta in stack distance due to its corunners (𝜏ℎ) contention 

– Determine 𝜏𝑗 which hits become misses. 
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@Aj - @Bj - @Cj - @Aj @Aj  hits 4-way cache 

example 
@Aj - @Bj - @Cj - @Dh - @Eh - @Aj 

@Aj  misses 



Cache Contention modelling /2 

𝜏𝑗  Analysis - Time between accesses 

 

 

 

 
 

𝜏ℎ,𝜏𝑘Contenders - Requests between 𝜏𝑗  accesses 
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Set Dispersion or Average set distance (ASD) 

– Contender’s Accesses can be mapped to different sets 

– Probability that 𝜏ℎs’ intermediate accesses maps to @Aj’s same set 

 
Increment in stack distance 

– Not all contender’s accesses to the same set increase stack distance: 

• Contender’s lines can be accessed repeatedly 

• Realization over contender’s stack distance 

– Assumption: all 𝜏ℎs’ intermediate accesses have the same stack dist. 

 

 

 

 

Cache Contention modelling /3 
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Bus Contention modelling /1 

Goal: Derive how many cycles of contention Tj will pay for 

each cycle of bus usage ( 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛  𝑏𝑢𝑠 𝑐𝑦𝑐𝑙𝑒𝑠) 

No bus split accesses ( ∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚 ) 
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Results /1 (Setup) 

Reference architecture 

– NGMP-model developed in the SoCLiB framework 

– Accuracy assessed against real hardware. 

Key Parameters: 

– Level 1 instruction & data cache: 

• 16kB, 4-way associative 

– Level 2 unified cache: 

• 256 kB, 4-way associative 

– Round-Robin arbitrated bus 

Metrics: 

– Accuracy of the model predicting the slowdown of  most sensitive 

EEMBC when running against resource stressing kernels (RSK) 

– Time overhead of the model 
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The model detects cases 

with “no interference”. 

 

 Upper bounded because of 

access pattern behavior 
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Results /2 (Cache Interference Accuracy) 

Accuracy: [1,2.47] 

0.3% 

0.4% 

0.4% 

Time impact of extra misses 



Bus Accuracy: 

 

 

 

 

 

 

Super linear effect 

introduced by store buffers. 

 

Global Accuracy 
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Results /3 (Bus & Global Accuracy) 

Accuracy: [0.43, 1.85] 

Global Accuracy: [0.6,1.4] 



EP Generation 

 

 

 

 

 

Average: 41 seconds 

 

 

 

Execution Time: 

 

 

 

 

 

Average: 0.12 seconds 
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Results /4 (Execution Time Overhead) 

Multiple schedule plans can be tested in very short time. 
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Conclusions and Future work 

Modeling multicore scenarios based on histograms 

Fair good results for the NGMP: 

– Accurate enough 

– Fast predictions 

No need to exchange sensible information amongst SP. 

 

 

Future Work: 

– Model the behaviour of store buffers 

– Improve the impact of simplified scenarios 
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