
www.bsc.es

Improving Early Design Stage Timing Modeling

in Multicore Based Real-Time Systems
Barcelona Supercomputing Center (BSC) and

Universitat Politècnica de Catalunya

Cobham Gaisler*

Barcelona Supercomputing Center (BSC)

Barcelona Supercomputing Center (BSC)

BSC and and IIIA-CSIC

David Trilla

Javier Jalle

Mikel Fernandez

Jaume Abella

Francisco J. Cazorla

* Done while he was working at BSC

22nd IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS 2016)

Vienna, Austria

Motivation

System integrators increasingly incorporate

software (SW) from different SW Providers (SP)

In Early-Design Phases (EDP) each SP

is provided

– A set of functions to implement

– A time budget

– A virtual machine (e.g GMV’s HAIR) of the

target platform

Virtual Machines (VM)s

– Allow functional testing

– Allow suppliers develop SW functions in isol.

– Fail to provide timing estimates of the

executed applications
David Trilla 2

 Inte-

grator

SP1

SP2

SP3

Problem

Early Design Phases

– Uncertainties: preliminary implementations

– Timing requirements are bounded with early estimates

• Overestimation  removes the uncertainties, over-provisioned system

• Underestimation  costly changes in late design phases (LDP)

Multicores

– Tasks execution time:

– Δt depends on co-runner tasks

• SP cannot derive etmuc without sharing their apps.

– Scheduling depends on etmuc and vice-versa

• How to assign and enforce timing budgets?

• Problem for the system integrators

David Trilla 3

Proposal

VM do not provide timing estimates of applications

– Full-fledge timing simulator attached to the VM is too slow (100-1000x)

We propose an approach for EDP that

– Provides fast and accurate timing estimates of tasks’ execution time

when the target (virtual) hardware comprises multicore

– Extends virtualized environments with a light-weight timing model that

• i) provides high accuracy and low overhead

• ii) does not require code or binaries to be shared among SW provider

(keeping the confidentiality on their developed software)

Overall: our proposal simplifies and speeds up the process of

getting timing estimates during the EDP

David Trilla 4

Outline

Motivation

Principle and main steps

Contention modelling (∆𝑡 = ∆𝑐𝑎𝑐ℎ𝑒 + ∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

– Cache contention (∆𝑐𝑎𝑐ℎ𝑒)

– Bus contention (∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

Results

Conclusions

David Trilla 5

Builds upon the concept of an execution profile (EP)

– Derived in isolation for each task

– Encapsulates for each task information

about its resource usage

Principle

David Trilla 6

SP1

SP2

SP3

EPA

EPB

EPc

in
te

g
ra

to
r

EPA

EPB

EPc

SP1

SP2

SP3

ΔA

ΔB

Δc

in
te

g
ra

to
r

A

EPA

Scheduling Plan

Steps

1) Generating the EP for each task and then

2) Contention modelling (Δt generation): must be fast!

3) Check scheduling plan and if required update it (4)

David Trilla 7

App App App

EP gene-
ration

Δt gene-
ration

Schedu-
ling plan

Update
sched. plan

Check sche-
duling plan

Satis-
fied?

App App EP

App App Δt
YES

NO

Once per application release
As many times as required

to consolidate the scheduling plan

① ② ③

④

⑤

Example: dual core and cyclic executive

Cyclic executive scheduling (widely used in industry)

– Major cycles (mac) and minor cycles (mic)

Scheduling plan provided by the OEM

– Suppliers can determine co-runners of their application in mic

In mic1 A and B interact with C

– Derive ΔtA
1, ΔtB

1, ΔtC
1,

– If both etC
muc and (etA

muc + etB
muc) fit in a mic no change to the

schedule (for this first mic) is required

David Trilla 8

Outline

Motivation

Principle and main steps

Contention modelling (∆𝒕 = ∆𝒄𝒂𝒄𝒉𝒆 + ∆𝒃𝒖𝒔 + ∆𝒎𝒆𝒎)

– Cache contention (∆𝑐𝑎𝑐ℎ𝑒)

– Bus contention (∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

Results

Conclusions

David Trilla 9

Contention modelling /1

Simulators

– Keep the state of the modelled HW in SW data structures

– On an access, data structures are searched and their internal state is

appropriately updated

– Time-consuming process

Our approach

– Keep no information about the execution history

– Model each instruction in isolation

– We use in the EPs to predict contention impact

• Build a representative scenario so that the timing behaviour of the

instruction approximates that of the real execution

• EPs comprise distributions  histograms

David Trilla 10

Contention modelling /2

Single entry cache. 2 accessing tasks (each accesses 1 line)

– Consecutive accesses from the same task  hit (1 cycle) and vice

versa (miss 10 cycles)

Example case: 100 accesses

David Trilla 11

1000

cycles

Average-based

approach

Histogram-based

approach

Frequency of access

of each task

Ƭj

Ƭh

$

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

F
re

q
u

e
n

c
y

Cycles

𝝉𝒋
𝝉𝒉

Contention modelling /2

Histogram: sequence of pairs <value, probability>

Realization ():

– Process to get a sample from the histogram

– Example

• <1, 0.1><2, 0.4><3.0.5>

• Generate a random number r from (0 to 1]

– 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =

1 𝑖𝑓 (0.0 < 𝑟 ≤ 0.1)
2 𝑖𝑓 (0.1 < 𝑟 ≤ 0.5)
3 𝑖𝑓 (0.5 < 𝑟 ≤ 1.0)

Each EP comprises several histograms

David Trilla 12

Histograms:
– Time between accesses going to the same set in uL2

– Memory Stack Distance: # of unique addresses to the same set between
two accesses to the same line.

– Cache Set Distance: # of accesses to different sets between two accesses
to the same set.

Other relevant Data:
• Hit rates of caches

• Number of instructions

• Instruction Mix

• Etc…

Execution Profile

David Trilla 13

s1

s2

s3
A B C D

A – B – C – D – A (3) s1 – s2 –s3 –s1 (2)

Execution time = (pipeline) frontend + (pipeline) backend lats.

Execution time in isolation

David Trilla

Fixed Bounded

Backend latencies: Jittery units  worst-case

David Trilla 15

Jittery back-end operations

– In general caused by the particular values operated

For operations with jittery back end latency we assume the

worst case latency

Execution time = (pipeline) frontend + (pipeline) backend lats.

Execution time in isolation

David Trilla 16

Frontend Backend

Instruction

type
Instruction

cache

data

cache

Bounded

Latency

L2

cache

Itype

L2

cache

Repeat

Fixed

(may cause

IL1 access)

Bounded.

(load and store

ops. can cause

an DL1 access)

Outline

Motivation

Principle and main steps

Contention modelling (∆𝑡 = ∆𝑐𝑎𝑐ℎ𝑒 + ∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

– Cache contention (∆𝒄𝒂𝒄𝒉𝒆)

– Bus contention (∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

Results

Conclusions

David Trilla 17

Cache Contention modelling /1

Setup

– Private DL1 and IL1. Shared UL2

– LRU replacement and non inclusive caches

Appreciation

– DL1 & IL1 hits; and UL2 misses in isol.  not affected by contention

– UL2 hits in isolation  can become misses. For an access, with LRU:

• If its stack distance is smaller to W (number of ways)  hit

• If it is greater or equal than W  miss

Goal

– Derive stack distance in isolation for every access of 𝜏𝑗

– Derive delta in stack distance due to its corunners (𝜏ℎ) contention

– Determine 𝜏𝑗 which hits become misses.

David Trilla 18

@Aj - @Bj - @Cj - @Aj @Aj  hits 4-way cache

example
@Aj - @Bj - @Cj - @Dh - @Eh - @Aj

@Aj  misses

Cache Contention modelling /2

𝜏𝑗 Analysis - Time between accesses

𝜏ℎ,𝜏𝑘Contenders - Requests between 𝜏𝑗 accesses

David Trilla 19

@Aj - @Dh - @Ek - @Bj - @Ek - @Cj - @Dh - @Ek - @Aj

A A B

Time between same set

Time between two accesses to the same line

C

Time between same set Time between same set

 + 1) x Set distance

A A B

Time between same seth

C D D E E E

Time between same setk Time between same setk

@Aj - @Bj - @Cj - @Aj @Aj - - @Aj

(Stack distance (2)

Set Dispersion or Average set distance (ASD)

– Contender’s Accesses can be mapped to different sets

– Probability that 𝜏ℎs’ intermediate accesses maps to @Aj’s same set

Increment in stack distance

– Not all contender’s accesses to the same set increase stack distance:

• Contender’s lines can be accessed repeatedly

• Realization over contender’s stack distance

– Assumption: all 𝜏ℎs’ intermediate accesses have the same stack dist.

Cache Contention modelling /3

20

Outline

Motivation

Principle and main steps

Contention modelling (∆𝑇 = ∆𝑐𝑎𝑐ℎ𝑒 + ∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

– Cache contention (∆𝑐𝑎𝑐ℎ𝑒)

– Bus contention (∆𝒃𝒖𝒔 + ∆𝒎𝒆𝒎)

Results

Conclusions

David Trilla 21

Bus Contention modelling /1

Goal: Derive how many cycles of contention Tj will pay for

each cycle of bus usage (𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑏𝑢𝑠 𝑐𝑦𝑐𝑙𝑒𝑠)

No bus split accesses (∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

David Trilla 22

Ubus

Ubus

Execution time

Time on the bus

Ratio of bus cycles Tj

Th

Tj

Th Tk

Availability

Outline

Motivation

Principle and main steps

Contention modelling (∆𝑡 = ∆𝑐𝑎𝑐ℎ𝑒 + ∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

– Cache contention (∆𝑐𝑎𝑐ℎ𝑒)

– Bus contention (∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

Results

Conclusions

David Trilla 23

Results /1 (Setup)

Reference architecture

– NGMP-model developed in the SoCLiB framework

– Accuracy assessed against real hardware.

Key Parameters:

– Level 1 instruction & data cache:

• 16kB, 4-way associative

– Level 2 unified cache:

• 256 kB, 4-way associative

– Round-Robin arbitrated bus

Metrics:

– Accuracy of the model predicting the slowdown of most sensitive

EEMBC when running against resource stressing kernels (RSK)

– Time overhead of the model

David Trilla 24

RSK RSK RSK EEMBC

The model detects cases

with “no interference”.

 Upper bounded because of

access pattern behavior

David Trilla 25

Results /2 (Cache Interference Accuracy)

Accuracy: [1,2.47]

0.3%

0.4%

0.4%

Time impact of extra misses

Bus Accuracy:

Super linear effect

introduced by store buffers.

Global Accuracy

David Trilla 26

Results /3 (Bus & Global Accuracy)

Accuracy: [0.43, 1.85]

Global Accuracy: [0.6,1.4]

EP Generation

Average: 41 seconds

Execution Time:

Average: 0.12 seconds

David Trilla 27

Results /4 (Execution Time Overhead)

Multiple schedule plans can be tested in very short time.

Outline

Motivation

Principle and main steps

Contention modelling (∆𝑡 = ∆𝑐𝑎𝑐ℎ𝑒 + ∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

– Cache contention (∆𝑐𝑎𝑐ℎ𝑒)

– Bus contention (∆𝑏𝑢𝑠 + ∆𝑚𝑒𝑚)

Results

Conclusions

David Trilla 28

Conclusions and Future work

Modeling multicore scenarios based on histograms

Fair good results for the NGMP:

– Accurate enough

– Fast predictions

No need to exchange sensible information amongst SP.

Future Work:

– Model the behaviour of store buffers

– Improve the impact of simplified scenarios

David Trilla 29

David Trilla 30

Q & A

The research leading to these results has received funding

from the European Space Agency under Project Reference

AO/1-7722/13/NL/LvH

Spanish Ministry of Science and Innovation TIN2015-65316-P.

MINECO under Ramon y Cajal postdoctoral fellowship

number RYC-2013-14717.

www.bsc.es

Improving Early Design Stage Timing Modeling

in Multicore Based Real-Time Systems
Barcelona Supercomputing Center (BSC) and

Universitat Politècnica de Catalunya

Cobham Gaisler*

Barcelona Supercomputing Center (BSC)

Barcelona Supercomputing Center (BSC)

BSC and and IIIA-CSIC

David Trilla

Javier Jalle

Mikel Fernandez

Jaume Abella

Francisco J. Cazorla

* Done while he was working at BSC

22nd IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS 2016)

Vienna, Austria

