Trading Cores for Memory Bandwidth in Real-time Systems

Ahmed Alhammad and Rodolfo Pellizzoni
Outline

• Introduction
• Problem Description
• Our Solution
• Conclusion
Parallel Tasks

DAG Model
Parallel Tasks

- Two notable scheduling schemes:
 1. Global
 2. Federated

DAG Model
Federated Scheduling

• High utilization tasks \((u_i \geq 1) \) are assigned dedicated cores.
• Low utilization tasks \((u_i < 1) \) are scheduled as multiprocessor scheduling of sequential tasks.
Federated Scheduling

• **High utilization tasks** \((u_i \geq 1)\) are assigned dedicated cores.
• Low utilization tasks \((u_i < 1)\) are scheduled as multiprocessor scheduling of sequential tasks.
Outline

• Introduction
• **Problem Description**
• Our Solution
• Conclusion
The Problem

core$_1$ core$_2$ core$_3$ core$_4$ core$_5$

off-chip memory

task$_1$

task$_2$

task$_3$
The Problem

- core_1
- core_2
- core_3
- core_4
- core_5
- off-chip memory
- task_1
- task_2
- task_3
The Problem

core_1 core_2 core_3 core_4 core_5

off-chip memory

task_1 task_2 task_3
The Problem

- core\textsubscript{1}
- core\textsubscript{2}
- core\textsubscript{3}
- core\textsubscript{4}
- core\textsubscript{5}

- off-chip memory

- task\textsubscript{1}
- task\textsubscript{2}
- task\textsubscript{3}
The Problem

- Tasks interfere through shared main memory
Outline

• Introduction
• Problem Description
• **Our Solution**
• Conclusion
Outline

• Introduction
• Problem Description
• **Our Solution**
 1. Makespan Bound
 2. Round-robin Arbitration
 3. Trading Cores for Memory Bandwidth
 4. Three Algorithms
 5. Results
• Conclusion
Makespan Bound (greedy scheduling)

m_i number of cores
q_i bandwidth fraction
Makespan Bound (greedy scheduling)

• Each DAG task is characterized by:
 1. Computation volume \(C_i^e \)
 2. Memory volume \(C_i^m \)
 3. Computation critical path \(L_i \)

\(m_i \) number of cores
\(q_i \) bandwidth fraction
Makespan Bound (greedy scheduling)

• Each DAG task is characterized by:
 1. Computation volume C_i^e
 2. Memory volume C_i^m
 3. Computation critical path L_i

\[C_i = \frac{C_i^m}{q_i} + \frac{C_i^e - L_i}{m_i} + L_i \leq D_i \]

m_i number of cores
q_i bandwidth fraction
Makespan Bound (greedy scheduling)

- Each DAG task is characterized by:
 1. Computation volume C_i^e
 2. Memory volume C_i^m
 3. Computation critical path L_i

$$C_i = \frac{C_i^m}{q_i} + \frac{C_i^e - L_i}{m_i} + L_i \leq D_i$$

m_i number of cores
q_i bandwidth fraction
Outline

• Introduction
• Problem Description
• **Our Solution**
• Conclusion

1. Makespan Bound
2. **Round-robin Arbitration**
3. Trading Cores for Memory Bandwidth
4. Three Algorithms
5. Results
Round-robin Arbitration

request buffer

task_i task_j
Round-robin Arbitration

- $C_i^m + C_i^m \times (\sum_{j \neq i} m_j)$

request buffer

task$_i$

request buffer

task$_j$
Round-robin Arbitration

- $C_i^m + C_i^m \times (\sum_{j \neq i} m_j)$
Round-robin Arbitration

- \(C_i^m + C_i^m \times (\sum_{j \neq i} m_j) \)

- \(C_i^m + C_i^m \times (n - 1) \)
Outline

• Introduction
• Problem Description
• Our Solution
 1. Makespan Bound
 2. Round-robin Arbitration
 3. Trading Cores for Memory Bandwidth
 4. Three Algorithms
 5. Results
• Conclusion
Trading Cores for Memory Bandwidth

• Tasks have different demand regarding memory
• The number of cores is expected to increase
• Memory bandwidth is also growing but in slower rate
Trading Cores for Memory Bandwidth

• Tasks have different demand regarding memory
• The number of cores is expected to increase
• Memory bandwidth is also growing but in slower rate
• The idea of trading cores for memory bandwidth
Example
Example

• Consider a task with the following parameters:
 \(C^m_1 = 50, \ C^e_1 = 100 \) and \(D_1 = 150 \)
Example

• Consider a task with the following parameters: $C_1^m = 50$, $C_1^e = 100$ and $D_1 = 150$

• For simplicity, assume $L_1 = 0$
Example

• Consider a task with the following parameters:
 \(C_1^m = 50, C_1^e = 100 \) and \(D_1 = 150 \)
• For simplicity, assume \(L_1 = 0 \)
• We recall that the makespan bound is:

 \[C_i(q_i,m_i) = \frac{C_i^m}{q_i} + \frac{C_i^e - L_i}{m_i} + L_i \]
Example

• Consider a task with the following parameters:
 \(C_1^m = 50, \ C_1^e = 100 \) and \(D_1 = 150 \)
• For simplicity, assume \(L_1 = 0 \).
• We recall that the makespan bound is:

\[
C_i(q_i,m_i) = \frac{c_i^m}{q_i} + \frac{c_i^e - L_i}{m_i} + L_i
\]

• The makespan \(C_1(1,1) = 50 \times 1 + 100/1 = 150 \)
Example

• Consider a task with the following parameters:
 \[C_1^m = 50, \quad C_1^e = 100 \quad \text{and} \quad D_1 = 150 \]
• For simplicity, assume \(L_1 = 0 \).
• We recall that the makespan bound is:

\[
C_i(q_i, m_i) = \frac{C_i^m}{q_i} + \frac{C_i^e - L_i}{m_i} + L_i
\]

• The makespan \(C_1(1,1) = 50 \times 1 + 100/1 = 150 \)
• The makespan \(C_1(1/2, 2) = 50 \times 2 + 100/2 = 150 \)
Outline

• Introduction
• Problem Description
• **Our Solution**
• Conclusion

1. Makespan Bound
2. Round-robin Arbitration
3. Trading Cores for Memory Bandwidth
4. Three Algorithms
5. Results
Assignment Algorithm

• Assign each task q_i and m_i such that

$$\sum_{i=1}^{n} q_i \leq 1 \text{ and } \sum_{i=1}^{n} m_i \leq m$$

• We propose three algorithms:
 (1) Optimal algorithm with $q_i \in \mathbb{R}$
 (2) Harmonic RR with $q_i = 1/2^j$
 (3) Software-based regulation
Optimal-Assign Algorithm \((q_i \in \mathbb{R}) \)

- \[C_i = \frac{c_i^m}{q_i} + \frac{c_i^e - L_i}{m_i} + L_i \leq D_i \]
Optimal-Assign Algorithm \((q_i \in \mathbb{R})\)

- \[C_i = \frac{c_i^m}{q_i} + \frac{c_i^e - L_i}{m_i} + L_i \leq D_i \]
- \[q_i(m_i) = \frac{c_i^m \times m_i}{(D_i - L_i) \times m_i - (c_i^e - L_i)} \]
Optimal-Assign Algorithm \((q_i \in \mathbb{R})\)

- \(C_i = \frac{c_i^m}{q_i} + \frac{c_i^e - L_i}{m_i} + L_i \leq D_i\)
- \(q_i(m_i) = \frac{c_i^m \times m_i}{(D_i - L_i) \times m_i - (c_i^e - L_i)}\)
Optimal-Assign Algorithm ($q_i \in \mathbb{R}$)

- $C_i = \frac{c_i^m}{q_i} + \frac{c_i^e-L_i}{m_i} + L_i \leq D_i$

- $q_i(m_i) = \frac{c_i^m \times m_i}{(D_i-L_i) \times m_i-(c_i^e-L_i)}$

- $\Delta_i(m_i) = q_i(m_i) - q_i(m_i + 1)$
Optimal-Assign Algorithm ($q_i \in \mathbb{R}$)

- $C_i = \frac{c_i^m}{q_i} + \frac{c_i^e - L_i}{m_i} + L_i \leq D_i$
- $q_i(m_i) = \frac{c_i^m \times m_i}{(D_i - L_i) \times m_i - (c_i^e - L_i)}$
- $\Delta_i(m_i) = q_i(m_i) - q_i(m_i + 1)$
Optimal-Assign Algorithm ($q_i \in \mathbb{R}$)

- $C_i = \frac{c_i^m}{q_i} + \frac{c_i^e - L_i}{m_i} + L_i \leq D_i$

- $q_i(m_i) = \frac{c_i^m \times m_i}{(D_i - L_i) \times m_i - (c_i^e - L_i)}$

- $\Delta_i(m_i) = q_i(m_i) - q_i(m_i + 1)$

- $\Delta_i(m_i) > 0$ and $\Delta_i(m_i) > \Delta_i(m_i + 1)$

The function $\Delta_i(m_i)$ is decreasing and convex.
Harmonic RR \((q_i \in \{1/2^j\}) \)
Harmonic RR \((q_i \in \{1/2^j\})\)

- \(\Theta_i(q_i) = \frac{q_i - \frac{q_i}{2}}{m_i \left(\frac{q_i}{2}\right) - m_i(q_i)}\)
Harmonic RR \((q_i \in \{1/2^j\}) \)

\[\Theta_i(q_i) = \frac{q_i - \frac{q_i}{2}}{m_i(\frac{q_i}{2}) - m_i(q_i)} \]

• We design the algorithm to continue until achieving 100% bandwidth utilization.
Example

\[q_1 + q_2 = 2 \]
Example

\[q_1 + q_2 = 1.5 \]
Example

\[q_1 + q_2 = 1.25 \]
Example

\[q_1 + q_2 = 0.75 \]
Example

\[q_1 + q_2 = 1.5 \]
Example

\[q_1 + q_2 = 1 \]
Memguard
Memguard

- Each task is assigned a budget Q_i
Memguard

• Each task is assigned a budget Q_i
• When a task finishes this budget, it is suspended
Memguard

• Each task is assigned a budget Q_i
• When a task finishes this budget, it is suspended
• The budget is recharged every period P
Memguard

• Each task is assigned a budget Q_i
• When a task finishes this budget, it is suspended
• The budget is recharged every period P
How to Compute Memory Time?
How to Compute Memory Time?

• Assume the following task:

memory

computation
How to Compute Memory Time?

• Assume the following task:

\[Q_i - \epsilon \quad Q_i \quad \text{suspension} \quad \epsilon \]
How to Compute Memory Time?

• Assume the following task:
How to Compute Memory Time?

• Assume the following task:
How to Compute Memory Time?

• Assume the following task:

\[Q_i - \epsilon \]

memory computation

\[Q_i \]

suspension

\[\epsilon \]

\[Q_i \]

suspension

\[Q_i \]

suspension

\[P - Q_i \]

\[P - Q_i \]

\[\Omega_i \]

contention

\[\Omega_i \]

contention

\[\Omega_i \]

contention
How to Compute Memory Time?

• Assume the following task:

\[Q_i - \epsilon \quad Q_i \quad \text{suspension} \quad \epsilon \]

\[Q_i \quad \text{suspension} \quad Q_i \quad \text{suspension} \]

\[\Omega_i \quad \text{contention} \quad \Omega_i \quad \text{contention} \quad \Omega_i \quad \text{contention} \]

\[P - Q_i \quad P - Q_i \]
Memory Time Under Regulation

\[\left| \frac{c_i^m}{Q_i} \right| \times P + P \]
Memory Time Under Regulation

- $\left\lfloor \frac{c_i^m}{Q_i} \right\rfloor \times P + P$

- We let $\frac{P}{Q_i} = \frac{1}{q_i}$ and remove the floor function
Memory Time Under Regulation

- \(\left\lfloor \frac{c_i^m}{Q_i} \right\rfloor \times P + P \)

- We let \(\frac{P}{Q_i} = \frac{1}{q_i} \) and remove the floor function

- \(\frac{c_i^m}{q_i} + P \) which is the same as in Optimal-Assign but shifted by constant \(P \)
Memory Time Under Regulation

- \[\left\lfloor \frac{c^m_i}{Q_i} \right \rfloor \times P + P \]
- We let \(\frac{P}{Q_i} = \frac{1}{q_i} \) and remove the floor function
- \(\frac{c^m_i}{q_i} + P \) which is the same as in Optimal-Assign but shifted by constant \(P \)
Memory Time Under Regulation

- \[\left\lfloor \frac{c_i^m}{Q_i} \right\rfloor \times P + P \]
- We let \(P = \frac{1}{Q_i} = \frac{1}{q_i} \) and remove the floor function
- \(\frac{c_i^m}{q_i} + P \) which is the same as in Optimal-Assign but shifted by constant \(P \)
Outline

• Introduction
• Problem Description

• **Our Solution**

• Conclusion

1. Makespan Bound
2. Round-robin Arbitration
3. Trading Cores for Memory Bandwidth
4. Three Algorithms

5. Results
\[m = 32, n = 5 \text{ and } U^e = 10 \]
$m = 32, n = 5$ and $U^e = 10$
\[m = 32, \ n = 5 \text{ and } U^e = 10 \]
\(m = 32, n = 5 \) and \(U^e = 10 \)
\[m = 32, n = 5 \text{ and } U^e = 10 \]
\(m = \infty, n = 5 \) and \(U^e = 10 \)
Outline

• Introduction
• Problem Description
• Our Solution → 1. Makespan Bound
• Conclusion → 2. Round-robin Arbitration
 → 3. Trading Cores for Memory Bandwidth
 → 4. Three Algorithms
 → 5. Results
Conclusion

• Federated scheduling is an elegant approach for parallel tasks
Conclusion

• Federated scheduling is an elegant approach for parallel tasks
• Previous research did not consider memory time
Conclusion

• Federated scheduling is an elegant approach for parallel tasks
• Previous research did not consider memory time
• In this work, we show how to integrate memory time
Conclusion

• Federated scheduling is an elegant approach for parallel tasks
• Previous research did not consider memory time
• In this work, we show how to integrate memory time
• We introduce a novel method to trade cores for memory bandwidth
Conclusion

• Federated scheduling is an elegant approach for parallel tasks
• Previous research did not consider memory time
• In this work, we show how to integrate memory time
• We introduce a novel method to trade cores for memory bandwidth
• We propose three algorithms for this method
Conclusion

• Federated scheduling is an elegant approach for parallel tasks
• Previous research did not consider memory time
• In this work, we show how to integrate memory time
• We introduce a novel method to trade cores for memory bandwidth
• We propose three algorithms for this method
• The results indicate a significant improvement over nRR