A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities

Peter Wägemann, Tobias Distler, Heiko Janker, Phillip Raffeck, Volkmar Sieh

22nd Real-Time and Embedded Technology and Applications Symposium
RTAS 2016

April 12, 2016

partly funded by:

DFG
Application Scenario – Energy-Neutral Real-Time Systems

Energy-Neutral Real-Time Systems

- Energy-neutral prototype of the I4Copter\(^1\)
- Main modes: flying, landed/harvesting

\(^1\) Ulbrich et al. *I4Copter: An Adaptable and Modular Quadrotor Platform*, SAC'11
Application Scenario – Energy-Neutral Real-Time Systems

- Expand panels for charging
- Collapse panels during flight
- Lightweight, robust solar films

organic solar films: Belectric OPV, solarte.de
Problems – Energy-Neutral Real-Time Systems

Real-Time Systems under Hard Energy Constraints

- Guarantee **timeliness**: position/flight control
- Respect **energy constraints**: limited/replenishable storage

Energy surpasses timeliness and vice versa
Challenges of Energy-Neutral Real-Time Systems

1. **Scheduling**: mixed constraints (time & energy), mixed criticalities
2. **Energy monitoring**: consumed & available energy budgets
3. **Consistency**: survive blackout periods
The **EnOS** Kernel

1. **Scheduling** with mixed criticalities and mixed constraints
2. Energy-budget **monitoring**
3. Surviving **blackouts** (suspend and resume)
Outline

1. Motivation
2. Scheduling with Mixed Criticalities & Mixed Constraints
3. Energy-Budget Monitoring
4. Surviving Blackouts
5. Evaluation
6. Conclusion
Motivation – Mixed-Criticality Systems

Guarantees \leadsto Pessimism \leadsto Slack Time

- “Flight critical”: inertial measurement/control $\Rightarrow C(HI)$
- “Mission critical”: capturing images $\Rightarrow C(LO)$
- **Hard guarantees** for **high time criticality** tasks
- More critical task \Rightarrow more pessimistic WCET estimate
- **Redistribute** resources from LO to HI (preempt LO)
Energy-Constrained Mixed-Criticality Systems

Völp et al. Has Energy Surpassed Timeliness?
Scheduling Energy-Constrained Mixed-Criticality Systems, RTAS’14

Mixed constraints: energy & time

Approach (EA-OCBP) considers
- $C(LO), \ldots, C(HI)$, and $E(LO), \ldots, E(HI)$
- Hyperperiod energy budget: E^{HP}

More pessimistic WCET $C \rightsquigarrow$ more pessimistic WCEC E^{1}

Coupling of time and energy constraints

1worst-case energy-consumption (WCEC)
Time Criticality versus Energy Criticality

When is **timeliness** most critical?
- During **activity phases** (i.e., flight mode)
- Uncritical in suspension phase
 - No time guarantees across blackout periods

When are **energy constraints** most critical?
- Close to **inactivity phases** (i.e., depletion)
- Safe suspension to persistent memory
Time Criticality versus Energy Criticality

When is timeliness most critical?

Time vs. Energy Criticality

1. Energy is critical
2. Time is critical
3. ... but not necessarily at the same time

- **Decoupling** of time and energy into **distinct energy modes**
- Safe suspension to persistent memory
EnOS | Scheduling with Mixed Criticalities & Mixed Constraints – Scheduling Approach | 12
Energy-Criticality Modes & Time-Criticality Levels

Multi-Mode Model

- Time (criticality) *levels & energy (criticality) modes*
- Energy budget for hyperperiod: $E_{HP}^{M_i}$
- **Different functionality** (task set) per mode possible
- **Less pessimistic WCEC analyses** in less critical energy modes
- Full functionality when energy plentiful

Decoupling energy and time criticalities
Task model: periodic, implicit deadlines, independent tasks, mixed criticality & mixed constraints: LOT^T, HIT^T, LOE^E, HIE^E

Static priority assignment (using EA-OCBP)

Energy-Budget Composition on Mode M_i

- **Execution budget** EB: estimate *depending on mode*
 - Stay on mode for *configurable number of hyperperiods* (H)
- **Grace budget** GB: handle budget violation in hyperperiod
 - *Ensures finishing hyperperiod*
 - Enable *safe mode switches*
How to get **safe upper bound** on Hyperperiod’s WCEC?

- WCEC of lowest energy-criticality mode is optimistic, not safe
- Trick exploits
 - **Fixed duration** of hyperperiod HP_{M_i}
 - **Physical upper limits** of electronic components
 - $E_{grace} = P_{max} \cdot HP_{M_i}$
 - **Very pessimistic, but safe** (required once per mode)
Scheduling – Online Part

Current Energy:

- Full battery
- Empty battery

Mode switches based on available and offline determined budgets

1. $M_1 \rightarrow M_2$
2. $M_2 \rightarrow M_{susp}$
3. $M_2 \leftarrow M_{susp}$
4. $M_1 \leftarrow M_2$

EB_i: Execution budget
GB_i: Grace budget

- Monitoring energy budgets of modes M_i
- Mode switches based on available and offline determined budgets
- Grace budget for safe degradation: allow finishing hyperperiod

EB^i: Execution budget
GB^i: Grace budget
Scheduling Enhancement

EA-OCBP Approach

Multi-Mode Model of EnOS

Enhancement

- Avoid pessimism when energy is plentiful
- Full decoupling of WCET and WCEC
1. Motivation

2. Scheduling with Mixed Criticalities & Mixed Constraints

3. Energy-Budget Monitoring

4. Surviving Blackouts

5. Evaluation

6. Conclusion
Deadline vs. Energy-Budget Violations

How to detect energy-budget violations?

- Detecting deadline violations
 - Hardware operates timing-oriented
 - General-purpose timers
- Detect energy-budget violations

Detecting deadline violations

Detect energy-budget violations

EnOS Energy-Budget Monitoring
Energy-Budget Monitoring – Concept

Lightweight Signalling Mechanism for Energy-Related Events

- Monitor budget violations
- **Polling** energy storage
 - **Overhead**
 - Not feasible as *wakeup mechanism* (from deep-sleep modes)

Notifications for energy-related events: “energy interrupts”
Exploitation of Commercial Off-the-Shelf Hardware

- Setup notifications
 - Digital-analog converter: set threshold
 - Comparator: issue energy interrupt

- Supercaps
 - Linear relationship between voltage and energy
 - No additional charging circuit for charging

- Used for both violations and wakeup for resumption
Outline

1. Motivation

2. Scheduling with Mixed Criticalities & Mixed Constraints

3. Energy-Budget Monitoring

4. Surviving Blackouts

5. Evaluation

6. Conclusion
Surviving Blackouts: Problem

When is enough energy harvested?

✔ Suspend early enough
 ✢ Exploit a priori knowledge of WCEC
 - Avoid waking up and immediately suspending
 - Forward-looking scheduling required

✗ When to wake up safely for useful operation?
Suspension & Resumption

Safe Resumption

- Minimum of hyperperiods executions
- Configurable energy mode for resumption \((M_1, M_2, \ldots, M_n)\)
- Allow developer to state *useful work*

 Wakeup only when *enough energy* to do *useful work*
1. Motivation

2. Scheduling with Mixed Criticalities & Mixed Constraints

3. Energy-Budget Monitoring

4. Surviving Blackouts

5. Evaluation

6. Conclusion
Hardware Components

1. Solar cells
2. Buck-Boost-Converter
3. Supercapacitors
4. Switching regulator
5. Freescale KL46Z: Cortex-M0+
6. Non-volatile FRAM
Mode-Dependent Energy Budgets

Baseline: coupling of WCET and WCEC (using EA-OCBP)

Synthetically generated task sets (using UUniFast)

Criticality factor between $E(HI)$ and $E(LO)$: 0.7x

脿 Up to 17.5% smaller energy budget
Setup *energy interrupt* and monitor offset

Worst-case resolution: 198 mJ (mean: 94 mJ, few seconds)

Useless as basis for single scheduling decisions of tasks

Feasible to monitor modes
Precision of Execution Budgets

<table>
<thead>
<tr>
<th>Measurement & modes</th>
<th>E_{HI}^{HP}</th>
<th>E_{MID}^{HP}</th>
<th>E_{LO}^{HP}</th>
<th>$E_{measured}^{HP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7</td>
<td>6.83</td>
<td>6.04</td>
<td>5.39</td>
<td>5.17</td>
</tr>
</tbody>
</table>

Execution budgets for a hyperperiod [in mJ]

- **WCEC analysis** [1] of task set (memory- and CPU-bound tasks)
- Pessimistic, but safe E_{HI}^{HP}
- Precise computation of E_{LO}^{HP} (respecting overheads & idle times)
- **Smaller budgets** (21%, 11%)
 - Enable switch back earlier when energy is less critical

Evaluating Energy-Mode Switches

Energy and mode trace on hardware

Configured hyperperiods: M_1: $1000 \times (100 \text{ s})$, M_2: $2000 \times (200 \text{ s})$

Requested number of HPs on mode fulfilled

Low offsets of mode switches between 0.3% and 3%

Less than grace budget

<table>
<thead>
<tr>
<th>Mode Switch</th>
<th>Time</th>
<th>Static $E_{\text{switch}}(i)$</th>
<th>Observed $E_{\text{switch}}(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_1 \rightarrow M_2$</td>
<td>336 s</td>
<td>12,252 mJ</td>
<td>12,218 mJ</td>
</tr>
<tr>
<td>$M_2 \rightarrow M_{\text{susp}}$</td>
<td>579 s</td>
<td>87 mJ</td>
<td>65 mJ</td>
</tr>
<tr>
<td>$M_{\text{susp}} \rightarrow M_1$</td>
<td>636 s</td>
<td>17,640 mJ</td>
<td>18,122 mJ</td>
</tr>
<tr>
<td>$M_1 \rightarrow M_2$</td>
<td>742 s</td>
<td>12,252 mJ</td>
<td>12,218 mJ</td>
</tr>
</tbody>
</table>
Outline

1. Motivation

2. Scheduling with Mixed Criticalities & Mixed Constraints

3. Energy-Budget Monitoring

4. Surviving Blackouts

5. Evaluation

6. Conclusion
Conclusion

Application Scenario:
Energy-Neutral Real-Time Systems

Scheduling with Mixed Criticalities & Mixed Constraints

✓ Energy-Criticality Modes & Time-Criticality Levels
✓ Multi-mode model: decoupling time and energy

Energy-Budget Monitoring

✓ Exploit existing peripherals (i.e., CMP, DAC)
✓ Mechanism to wakeup & switch modes: energy interrupts

Surviving Blackouts

✓ Safe degradation of services through modes until suspension
✓ Resumption when energy for modes guaranteed
Questions

Get EnOS...

gitlab.cs.fau.de/enos

Lots of thanks to...

- Our anonymous shepherd(s)
- Andreas Distler
- Peter Ulbrich

Questions?

Thank you for your attention!